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8 母分散が未知の場合

8 母分散が未知の場合

8.1 はじめに
•母分散が未知の場合の平均値の差の検定
は、σx と σy が等しいかどうかで手法が
異なります。

•ここでは、σx と σy が等しい場合を説明
します。

•ここでは、σx と σy が等しくない場合も

紹介します。

8.1.1 ポイント
•等分散の検定
•等分散の場合の母平均の差の検定
•ウェルチの t検定
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8.1 はじめに 8 母分散が未知の場合

8.1.2 標準正規分布
平均 0,分散 1の正規分布を標準正規分布
といい N(0, 1)とあらわす。

8.1.3 正規分布
X = xが標準正規分布に従う Z = z を用
いて

x = µ + σz ; σ ̸= 0 (1)

とあらわせるとき、X が従う分布を『平均
µ, 分散 σ2 の正規分布』といい、N

(
µ, σ2)

であらわす。
xが N

(
µ, σ2)に従うとき、

z = x − µ

σ
; σ ̸= 0 (2)

とすると、z は、標準正規分布 N(0, 1) に
従う。
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8.1 はじめに 8 母分散が未知の場合

8.1.4 χ2 分布
標準正規分布 N(0, 1)に従う n個の独立な確率変数 z1, z2, · · · , zn の平方和を作り χ2

(z) と
あらわす。

χ2
(z) =

n∑
i=1

zi
2 (3)

このとき nを『自由度』といい ν であらわす。χ2
(z) が従う分布を『自由度 ν = nの χ2 分布』

という。
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8.1 はじめに 8 母分散が未知の場合

8.1.5 χ2 の和
2 つの確率変数 U1, U2 がそれぞれ独立
に χ2 分布に従うとする。U1 の自由度を
ν = n,U2 の自由度を ν = mとする。

U1 =
n∑

i=1
zi

2 (4)

U2 =
m∑

j=1
zj

2 (5)

ここで

U3 = U1 + U2 (6)

を考える。(4)(5)を代入すると

U3 =
n∑

i=1
zi

2 +
m∑

j=1
zj

2 (7)

=
n∑

i=1
zi

2 +
n+m∑

i=n+1
zi

2 (8)

=
n+m∑
i=1

zi
2 (9)

よって、U3は自由度 ν = n + mの χ2分布に
従う。
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8.1 はじめに 8 母分散が未知の場合

8.1.6 標本平均
サンプル・サイズが nである標本 Aに属する要素 xi の平均を『標本平均』といい、X̄ であ
らわす。標本に属する要素の数を nとし i番目の要素を xi とあらわすと、

X̄ = 1
n

n∑
xi∈A

xi (10)

である。
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

8.2 x ∼ N(µ, σ2)が従う χ2分布
N
(
µ, σ2)に従う確率変数 X = xを標準化

zi = xi − µ

σ
(11)

すると、Z = zは N(0, 1)に従う。
ここで、N

(
µ, σ2)からサンプル・サイズ

nの標本 Aを抽出し、

χ2
µ =

n∑
xi∈A

(
xi − µ

σ

)2

(12)

をつくると、χ2
µ は自由度 ν = nの χ2 分布に

従う。
また、µの代わりに X̄ をもちいて

χ2
X̄

=
n∑

xi∈A

(
xi − X̄

σ

)2

(13)

をつくると、χ2
X̄
は自由度 ν = n − 1の χ2 分

布に従う。
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

8.2.1 χ2
X̄

+ χ2
Ȳ
の自由度

N
(
µ(X), σ2) から抽出されたサンプル・

サイズ n の標本 A において、χ2
X̄
は自由度

ν = n − 1の χ2 分布に従う。
N
(
µ(Y ), σ2) から抽出されたサンプル・

サイズ mの標本 B において、χ2
Ȳ
は自由度

ν = m − 1の χ2 分布に従う。

よって χ2
X̄

+ χ2
Ȳ
は自由度

ν = (n − 1) + (m − 1) (14)

= n − 1 + m − 1 (15)

= n + m − 2 (16)

の χ2 分布に従う。
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

問題 IX − 8 − 1

χ2
X̄

=
n∑

xi∈A

(
xi − X̄

σ

)2

χ2
Ȳ

=
m∑

yj∈B

(
yj − Ȳ

σ

)2

とする。

χ2
X̄

+ χ2
Ȳ

を計算しなさい。
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

解例 IX − 8 − 1

χ2
X̄

+ χ2
Ȳ
　 =

n∑
xi∈A

(
xi − X̄

σ

)2

+
m∑

yj∈B

(
yj − Ȳ

σ

)2

= 1
σ2

 n∑
xi∈A

(
xi − X̄

)2 +
m∑

yj∈B

(
yj − Ȳ

)2


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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

8.2.2 V
(
X̄
)

+ V
(
Ȳ
)

N
(
µ(X), σ2) から抽出された n 個の要素

を持つ標本を X とし、
N
(
µ(y), σ2) から抽出された m 個の要素

を持つ標本を Y とする。

X = {x1, x2, · · · , xn} (17)

Y = {y1, y2, · · · , ym} (18)

標本平均の分散はそれぞれ

V
(
X̄
)

= V
(

1
n

n∑
xi∈A

xi

)
(19)

V
(
Ȳ
)

= V

 1
m

m∑
yj∈B

yj

 (20)

である。
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

ここで、

V
(
X̄ + Ȳ

)
= V

(
X̄
)

+ V
(
Ȳ
)

(21)

= V

(
1
n

n∑
xi∈A

xi

)
+ V

 1
m

m∑
yj∈B

yj

 (22)

= 1
n2 V

(
n∑

xi∈A

xi

)
+ 1

m2 V

 m∑
yj∈B

yj

 (23)

xi、yj はそれぞれ独立なので iおよび j ごと
の分散であらし

= 1
n2 (V (x1) + V (x2) + · · · + V (xn))

+ 1
m2 (V (y1) + V (y2) + · · · + V (ym)) (24)

= 1
n2 nσ2 + 1

m2 mσ2 (25)

= σ2

n
+ σ2

m
(26)

= σ2
(

1
n

+ 1
m

)
(27)
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

8.2.3 標本平均からの偏差の二乗和
母平均を µ,母分散を σ2 とする。ここで

E
(

n∑
xi∈A

(
xi − X̄

)2
)

= E
(

n∑
xi∈A

(
xi−µ + µ − X̄

)2
)

(28)

= E
(

n∑
xi∈A

(
(xi − µ) +

(
µ − X̄

) )2
)

(29)

= E
(

n∑
xi∈A

(xi − µ)2 +
n∑

xi∈A

2 (xi − µ)
(
µ − X̄

)
+

n∑
xi∈A

(
µ − X̄

)2
)

(30)

= E
(

n∑
xi∈A

(xi − µ)2 + 2
(
µ − X̄

) n∑
xi∈A

(xi − µ) + n
(
µ − X̄

)2
)

(31)
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

和の期待値は期待値の和なので

= E
(

n∑
xi∈A

(xi − µ)2

)
+ E

(
2
(
µ − X̄

) n∑
xi∈A

(xi − µ)

)
+ E

(
n
(
µ − X̄

)2)
(32)

ここで、第 1項は iごとに母分散の定義 E
(
(xi − µ)2) = σ2 より、nσ2。
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

第 2項総和部分は
n∑

xi∈A

(xi − µ) =
n∑

xi∈A

xi − nµ (33)

= nX̄ − nµ (34)

= −n
(
µ − X̄

)
(35)

よって第 2項は

E
(
2
(
µ − X̄

) (
−n
(
µ − X̄

)))
= −2nE

((
µ − X̄

)2
)

(36)
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

従って (32)は

= nσ2 − 2nE
((

µ − X̄
)2
)

+ nE
((

µ − X̄
)2
)

(37)

= nσ2 − nE
((

µ − X̄
)2
)

(38)

(38)第 2項期待値部分は標本平均 X̄ の分散
なので V

(
X̄
)とあらわすと

V
(
X̄
)

= V
(

x1 + x2 + · · · + xn

n

)
(39)

= 1
n2 V (x1 + x2 + · · · + xn) (40)

各 xi は独立なので分散の和に分解すると

= 1
n2 (V (x1) + V (x2) + · · · + V (xn))

(41)

定義により V (xi) = σ2 なので

= 1
n2 nσ2 (42)

= σ2

n
(43)
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

よって (38)は

nσ2 − n × σ2

n
= nσ2 − σ2 (44)

= (n − 1) σ2 (45)

(28)左辺と (45)を並べると

E
(

n∑
xi∈A

(
xi − X̄

)2
)

= (n − 1) σ2 (46)
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8.2 x ∼ N(µ, σ2)が従う χ2 分布 8 母分散が未知の場合

ここで、E

 n∑
xi∈A

(
xi − X̄

)2 +
m∑

yj∈B

(
yj − Ȳ

)2

を求める。

E

 n∑
xi∈A

(
xi − X̄

)2 +
m∑

yj∈B

(
yj − Ȳ

)2

 = E
(

n∑
xi∈A

(
xi − X̄

)2
)

+ E

 m∑
yj∈B

(
yj − Ȳ

)2

 (47)

= (n − 1) σ2 + (m − 1) σ2 (48)

= σ2 ((n − 1) + (m − 1)) (49)

= σ2 (n + m − 2) (50)
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8.3 F 分布 8 母分散が未知の場合

8.3 F 分布
自由度 ν = nの χ2分布に従う確率変数を χ2

x, 自由度 ν = mの χ2分布に従う確率変数を χ2
y

とする。この二つの χ2 分布に従う変数 χ2
x, χ2

y, を用いて統計量

F(n,m) =

(
χ2

x

n

)
(

χ2
y

m

) (51)

を作る。このとき統計量 F(n,m) が従う分布を『自由度 (n, m)の F 分布』という。
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8.4 t分布 8 母分散が未知の場合

8.4 t分布
標準正規分布 N(0, 1)に従う確率変数 Z = z と、これとは独立に自由度 ν = nの χ2 分布に
従う確率変数 χ2

z を用いて

t0 = z√
χ2

z

n

(52)

をつくる。このとき t0 が従う分布を『t分布』といい、ν = nを『t分布の自由度』という。
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8.5 母分散が未知の場合の母平均の差の検定 8 母分散が未知の場合

8.5 母分散が未知の場合の母平均の
差の検定
母分散 σ2 が未知の場合は、母分散が等し
いかどうかで推定方法が異なる。ここでは母
分散が等しい場合を説明する。

xi ∼ N
(
µx, σ2

x

)
; i = 1, 2, · · · , n (53)

yj ∼ N
(
µy, σ2

y

)
; j = 1, 2, · · · , m (54)

とする。

8.5.1 等分散の検定
母分散 σ2

x, σ2
y が未知なので、分散が等し

いかどうかを検定する。
仮説を

H0 : σ2
x = σ2

y (55)

H1 : σ2
x ̸= σ2

y (56)

とする。
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8.5 母分散が未知の場合の母平均の差の検定 8 母分散が未知の場合

それぞれの不偏分散

sx
2 = 1

n − 1

n∑
xi∈A

(
xi − X̄

)2 (57)

sy
2 = 1

m − 1

m∑
yj∈B

(
yj − Ȳ

)2 (58)

のうち、値の大きい方を分子にして統計量
F0 をつくる。ここで、

sx
2 > sy

2 (59)

とすると、F0 は

F0 = sx
2

sy
2 (60)

である。
ここで、sx

2 は自由度 (n − 1)の χ2 分布に
従い、sy

2は自由度 (m − 1)の χ2分布に従う
から、F0 は自由度 (n − 1, m − 1)の F 分布
に従う。
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8.5 母分散が未知の場合の母平均の差の検定 8 母分散が未知の場合

そこで有意水準両側 5 % で検定すると

F0 ≧ F (n − 1, m − 1, 0.025) (61)

のとき、H0 が棄却される。
等分散の検定で H0 が棄却されず、X と Y の分散が異なるとは言えない場合、

σ2
x = σ2

y = σ2 (62)

として次の『母平均の差の検定』を行う。

最上資料館 25/40



8.5 母分散が未知の場合の母平均の差の検定 8 母分散が未知の場合

8.5.2 母分散が等しい場合の母平均の差の検定
仮定を

H0 : µx − µy = 0 (63)

H1 : µx − µy ̸= 0 (64)

である。ここで

E

 n∑
xi∈A

(
xi − X̄

)2 +
m∑

yj∈B

(
yj − Ȳ

)2

 = σ2 (n + m − 2) (65)
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8.5 母分散が未知の場合の母平均の差の検定 8 母分散が未知の場合

なので、X, Y の共通の分散を

σ̂2 =
∑n

xi∈A

(
xi − X̄

)2 +
∑m

yj∈B

(
yj − Ȳ

)2

n + m − 2
(66)

で推定する。

X̄ − Ȳ ∼ N

(
µx − µy,

σ2
x

n
+

σ2
y

m

)
(67)

において、

σ2
x = σ2

y =
∑n

xi∈A

(
xi − X̄

)2 +
∑m

yj∈B

(
yj − Ȳ

)2

n + m − 2
(68)
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8.5 母分散が未知の場合の母平均の差の検定 8 母分散が未知の場合

とすると、標本平均の差の分散 V
(
X̄ − Ȳ

)は

V
(
X̄ − Ȳ

)
=

(∑n

xi∈A
(xi−X̄)2+

∑m

yj ∈B
(yj−Ȳ )2

n+m−2

)
n

+

(∑n

xi∈A
(xi−X̄)2+

∑m

yj ∈B
(yj−Ȳ )2

n+m−2

)
m

(69)

=

∑n
xi∈A

(
xi − X̄

)2 +
∑m

yj∈B

(
yj − Ȳ

)2

n + m − 2

( 1
n

+ 1
m

)
(70)

である。
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8.5 母分散が未知の場合の母平均の差の検定 8 母分散が未知の場合

このとき、

χ2
X̄+Ȳ

= χ2
X̄

+ χ2
Ȳ

(71)

は自由度 ν = n + m − 2 の χ2 分布に従うので、

t0 =
(
X̄ − Ȳ

)
− (µx − µy)√√√√(∑n

xi∈A
(xi−X̄)2+

∑m

yj ∈B
(yj−Ȳ )2

n+m−2

)( 1
n + 1

m

) (72)

は自由度 n + m − 2の t分布に従う。
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この t0 を

H0 : µx − µy = 0 (73)

の下で、両側 5% で検定すると、

t0 ≦ −t(n + m − 2, 0.05) (74)

または、

t0 ≧ t(n + m − 2, 0.05) (75)

のとき H0 が棄却される。
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例題

表 1 数値例
A群 10.5 9.8 10.9 9.7 10.6
B群 11.1 11.7 10.8 11.5 10.9

A群と B群の母平均に差があるかを有意
水準 5% で検定する。

等分散の検定
母分散に対する仮説を

H0 : σ2
a = σ2

b (76)

H1 : σ2
a ̸= σ2

b (77)

とする。
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Ā = 10.5 + 9.8 + 10.9 + 9.7 + 10.6
5

= 10.3 (78)

B̄ = 11.1 + 11.7 + 10.8 + 11.5 + 10.9
5

= 11.2 (79)

(
xi − X̄

)2 = (10.5 − 10.3)2 + (9.8 − 10.3)2 + (10.9 − 10.3)2

+ (9.7 − 10.3)2 + (10.6 − 10.3)2 = 1.10 (80)(
yi − Ȳ

)2 = (−0.1)2 + (0.5)2 + (−0.4)2 + (0.3)2 + (−0.3)2

= 0.60 (81)
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sa
2 = 1.10

5 − 1
= 0.275 (82)

sb
2 = 0.60

4
= 0.15 (83)

F0 = sa
2

sb
2 = 0.275

0.15
= 1.83 (84)

有意水準 αの F 分布の上側の臨界値を F (ν1, ν2, α/2)であらわすと、臨界値は

F (4, 4, 0.025) = 9.604 529 885 (85)
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なので1）

F0 ≦ F (4, 4, 0.025) (86)

なので、H0 は棄却されない。よって『分散が異なる』とは言えないので等分散の場合の平均
値の差の検定を行う。

1） Excelを用いて F.INV.RT(0.025,4,4) で算出。F分布表であれば 9.60。
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母平均の差の検定
母平均の差に対する仮説を

H0 : µa − µb = 0 (87)

H1 : µa − µb ̸= 0 (88)

とする。V
(
X̄ − Ȳ

)の推定値 σ̂2 は

σ̂2 =
∑n

xi∈A

(
xi − X̄

)2 +
∑m

yj∈B

(
yi − Ȳ

)2

n + m − 2
(89)

= 1.1 + 0.6
5 + 5 − 2

= 0.2125 (90)
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よって

t0 = Ā − B̄√∑
(xi−X̄)2+

∑
(yi−Ȳ )2

n+m−2

√
1
n + 1

m

(91)

= 10.3 − 11.2√
1.1+0.6
5+5−2

√
1
5 + 1

5

(92)

= −0.9√
1.7+0.6

8

√
2
5

(93)

= −3.09 (94)

有意水準 α の自由度 ν の t 分布の臨界値を

t(ν, α)とあらわすと、 臨界値は2）

t(8, 0.05) = 2.306 004 135 (95)

なので

|t0| > t(8, 0.05) (96)

H0は棄却され、A群と B群には『差がない』
とは言えない。

2） Excel で T.INV.2T(0.05,8) で算出。t 分布表で
あれば 2.30。
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8.6 母分散が異なる場合の平均値の
差の検定【参考】
等分散の検定で

H0 : σ2
a = σ2

b (97)

が棄却された場合は、

u0 = X̄ − Ȳ√
σ2

x

n + σ2
y

m

(98)

の σ2
x, σ2

y の代わりに不偏分散 s2
x, s2

y を用
いて、

t0 = X̄ − Ȳ√
s2

x

n + s2
y

m

(99)

で検定を行う。この場合 t分布の自由度は

ν0 =

(
s2

x

n + s2
y

m

)2

(
s2

x
n

)2

n−1 +

(
s2

y
m

)2

m−1

(100)

この検定方法をWelchの t検定（ウェルチの
t検定)という。
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8.7 まとめ
•母分散は通常未知である。
•未知の場合は等分散の検定を行い等分散であることを確認する。
•等分散であることが確認出来たら F 検定を行う。
•ここでは不偏分散が小さい方を分母にしたので上側で検定しているが、分母が小さい場合
は下側検定になる。

•参考レベルで母分散が等しくない場合も紹介をした。
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