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2 正規分布

2 正規分布

2.1 はじめに
•様々な対象からデータをとると左右対称
の釣り鐘型の分布をしていることがよく
観測されます。

•また、二項分布において N を大きくす
ると同様の形に近づきます。

•この釣り鐘型の確率密度関数をもつ分布

を正規分布といいます。

2.1.1 ポイント
•組合せの数
•二項分布
•正規分布
•仮説検定
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2.1 はじめに 2 正規分布

2.1.2 ネイピア数
定義� �
以下で定義される無理数を eであらわし
『ネイピア数』という。

e = lim
n→∞

(
1 + 1

n

)n

(1)� �
ネイピア数 eは底とすることが多い。そこで

ex = exp (x) (2)

とあらわす。

ネイピア数は

e = 2.718 281 828 459 045 235 36 · · · (3)

とつづく無理数である。
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2.1 はじめに 2 正規分布

2.1.3 順列
定義� �
異なったものを 1列に並べた配列を『順
列』という。n個の異なったものから r

個を選んで並べるとき、異なる順列の個
数を

nPr (4)

であらわす。� �

nPr = n × (n − 1) × · · · × (n − r + 1) (5)

である。特に

nPn = n × (n − 1) × · · · × 3 × 2 × 1 (6)

のとき『nの階乗』といい、

n! (7)

であらわす。
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2.1 はじめに 2 正規分布

n = 0のとき

0! = 1 (8)

と定義する。これらの記号を使うと

nPr = n!
(n − r)!

(9)

である。

問題 IX − 2 − 1
以下の値を求めなさい。

(i) 8P0

(ii) 8P1

(iii) 8P2

(iv) 8P3

(v) 8P4

(vi) 8P5

(vii) 8P6

(viii) 8P7

(ix) 8P8
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2.1 はじめに 2 正規分布

解例 IX − 2 − 1

(i) 8P0 = 8!
8!

= 1

(ii) 8P1 = 8!
7!

= 8

(iii) 8P2 = 8!
6!

= 8 × 7 = 56

(iv) 8P4 = 8!
5!

= 8 × 7 × 6 = 336

(v) 8P4 = 8!
4!

= 8 × 7 × 6 × 5 = 1680

(vi) 8P5 = 8!
3!

= 8 × 7 × 6 × 5 × 4 = 6720

(vii) 8P6 = 8!
2!

= 8×7×6×5×4×3 = 20 160

(viii) 8P7 = 8!
1!

= 8 × 7 × 6 × 5 × 4 × 3 × 2
= 40 320

(ix) 8P8 = 8!
0!

= 8! = 40 320
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2.1 はじめに 2 正規分布

2.1.4 組合せ
定義� �

n個の異なったものから r個を選びだす
選び方を『組合せ』といい、異なる組合
せの総数を

nCr (10)

であらわす。� �

r = 0のとき

nC0 = 1 (11)

と定義する。

順列の数 nPr は n 個の異なるものから r

個とってきて、並べる総数である。n個の異
なったものから r個を選びだす組合せの数は
nCr であり、選び出した r個を全て並び替え
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2.1 はじめに 2 正規分布

ると、rPr である。よって

nPr = nCr × rPr (12)

nPr

rPr
= nCr (13)

これを階乗を使ってあらわすと

nCr = n!
r! (n − r)!

(14)

である。

問題 IX − 2 − 2
次の値を求めなさい。

(i) 8C0

(ii) 8C1

(iii) 8C2

(iv) 8C3

(v) 8C4

(vi) 8C5

(vii) 8C6

(viii) 8C7

(ix) 8C8
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2.1 はじめに 2 正規分布

解例 IX − 2 − 2

(i) 8C0 = 8!
8!0!

= 1

(ii) 8C1 = 8!
7!1!

= 8

(iii) 8C2 = 8!
6!2!

= 28

(iv) 8C3 = 8!
5!3!

= 56

(v) 8C4 = 8!
4!4!

= 70

(vi) 8C5 = 8!
3!5!

= 56

(vii) 8C6 = 8!
2!6!

= 28

(viii) 8C7 = 8!
1!7!

= 8

(ix) 8C8 = 8!
0!8!

= 1
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2.2 二項分布 2 正規分布

2.2 二項分布
定義� �
ある試行において事象 E の起こる確率を Pr(E) = p、その補事象の確率を Pr

(
EC

)
= qと

する。この試行を独立に n回繰り返すとき、事象 E の起こる回数を X とすれば、X の確
率分布は

Pr (X = x) = nCx pxqn−x (15)

である。この確率分布を、確率 pに対する次数 nの『二項分布』といい、B(n, p)であら
わす。� �
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2.2 二項分布 2 正規分布

B(n, p)の期待値,分散ならびに標準偏差は

E(X) = np (16)

V(X) = npq (17)

D(X) = √
npq (18)

である。
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2.2 二項分布 2 正規分布

問題 IX − 2 − 3
XはB

(
8,

1
2

)
に従う確率変数とする。以

下の確率を求めなさい。

(i) Pr(X = 0)
(ii) Pr(X = 1)
(iii) Pr(X = 2)
(iv) Pr(X = 3)
(v) Pr(X = 4)
(vi) Pr(X = 5)
(vii) Pr(X = 6)

(viii) Pr(X = 7)
(ix) Pr(X = 8)
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2.2 二項分布 2 正規分布

解例 IX − 2 − 3

(i) Pr(X = 0) = 1
256

(ii) Pr(X = 1) = 8
256

(iii) Pr(X = 2) = 28
256

(iv) Pr(X = 3) = 56
256

(v) Pr(X = 4) = 70
256

(vi) Pr(X = 5) = 56
256

(vii) Pr(X = 6) = 28
256

(viii) Pr(X = 7) = 8
256

(ix) Pr(X = 8) = 1
256
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2.2 二項分布 2 正規分布

問題 IX − 2 − 4
XはB

(
8,

1
2

)
に従う確率変数とする。以

下の値を求めなさい。

E (X) =
n∑

i=0
xipi

問題 IX − 2 − 5
XはB

(
8,

1
2

)
に従う確率変数とする。以

下の値を求めなさい。

V (X) =
n∑

i=0
(xi − E (X))2

pi
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2.2 二項分布 2 正規分布

解例 IX − 2 − 4

0 × 1
256

+ 1 × 8
256

+ 2 × 28
256

+ 3 × 56
256

+ 4 × 70
256

+ 5 × 56
256

+ 6 × 28
256

+ 7 × 8
256

+ 8 × 1
256

= 0 + 8 + 56 + 168 + 280 + 280 + 168 + 56 + 8
256

= 4

解例 IX − 2 − 5

(0 − 4)2 × 1
256

+ (1 − 4)2 × 8
256

+ (2 − 4)2 × 28
256

+ (3 − 4)2 × 56
256

+ (4 − 4)2 × 70
256

+ (5 − 4)2 × 56
256

+ (6 − 4)2 × 28
256

+ (7 − 4)2 × 8
256

+ (8 − 4)2 × 1
256

= 2
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2.3 標準正規分布 2 正規分布

2.3 標準正規分布
確率変数Xが二項分布 B(n, p)に従うとき
確率変数 X を標準化した変数 Z

z = x − np√
np(1 − p)

(19)

は nを十分に大きくすると、そのヒストグラ
ムは、左右対称な釣り鐘型の図形に近づいて
ゆく。

このとき、ヒストグラムの上部を点で結ん
だ曲線は

f(z) = 1√
2π

exp
(

−1
2

z2
)

(20)

に近似する。(20)を『正規曲線』という。こ
の正規曲線と z 軸で囲われる範囲の面積は 1
である。正規曲線は z = 0の時、最大値

f(z) = 0.39894228 · · · (21)

をとる f 軸に対して対称な単峰型の正値関
数である。
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2.3 標準正規分布 2 正規分布

図 1 B(100, 0.5)の Z の分布
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2.3 標準正規分布 2 正規分布

図 2 正規曲線
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2.3 標準正規分布 2 正規分布

2.3.1 標準正規分布
定義� �
確率変数 Z が a と b の間にある確率
Pr(a ≦ z ≦ b)が区間 [a, b]において、正
規曲線と z軸に挟まれた領域の面積とし
て与えられるとき、確率変数 Z の分布
は『標準正規分布』であるといい

N(0, 1) (22)

であらわす。� �

図 3 Pr (a ≦≦≦ z ≦≦≦ b)

z
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2.3 標準正規分布 2 正規分布

2.3.2 標準正規分布の特徴
確率変数 Z が標準正規分布に従うとき、以下の特徴がある。

•Pr (z ≦ −1.959 964) = 0.024 997 · · · である。
•Pr (z ≧ 1.959 964) = 0.024 997 · · · である。
•Pr (−1.959 964 ≦ z ≦ 1.959 964) = 0.950 004 · · · である。
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2.3 標準正規分布 2 正規分布

図 4 標準正規分布の特徴
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2.3 標準正規分布 2 正規分布
定義� �
確率変数 X = xが標準正規分布 Z を用
いて

x = µ + σz ;ただしσ ̸= 0 (23)

とあらわせるとき、X は『平均 µ,分散
σ2の正規分布』であるといい、N(µ, σ2)
であらわす。� �

X が正規分布 N(µ, σ2) に従うとき、X = x

を標準化した

z = x − µ

σ
(24)

は標準正規分布 N(0, 1)に従う。
平均を µ,分散を σ2 > 0とすると、正規分
布の確率密度関数は

f(x) = 1√
2πσ2

exp
(

− (x − µ)2

2σ2

)
(25)

で与えられる。
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2.3 標準正規分布 2 正規分布

2.3.3 信頼区間
標準正規分布において zが −1.96 ≦ z ≦ 1.96 区間に収まる確率は

Pr (−1.96 ≦ z ≦ 1.96) = 0.950 004 · · · (26)

である。この区間 −1.96 ≦ z ≦ 1.96 を『95% 信頼区間』という。
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2.3 標準正規分布 2 正規分布

2.3.4 信頼区間の意味
•観測される Z = zが 95 % 信頼区間の範囲に収まる確率は 0.95である。
•範囲に含まれない確率は 0.05である。
•信頼区間の幅を広げれば、範囲に含まれる確率は大きくなる。
•標準正規分布では定義域は (−∞, +∞)なので、−1.96 ≦ z ≦ 1.96は相対的にほんのわず
かな区間である。

•信頼区間の範囲を決めるのは分析者である。
•同じ確率を持つならば、信頼区間は狭い範囲であること好ましい。
•標準正規分布は左右対称であって、対称の軸で最大値を持つ単峰形をしているので、同じ
確率を持つならば z = 0を中心にした対称の区間が最も好ましい。
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2.3 標準正規分布 2 正規分布

2.3.5 一般的な正規分布の 95%信頼区間
X = xが平均 µ,標準偏差 σの正規分布 N(µ, σ2)に従う場合

x = µ + σz (23)

なので

z = x − µ

σ
(24)

である。従って、xの 95%信頼区間は

µ − 1.96 σ ≦ x ≦ µ + 1.96 σ (27)

である。
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2.4 仮説検定 2 正規分布

2.4 仮説検定
前提となる状況を『帰無仮説』という。帰無仮説の下で、稀な現象が発生した場合、統計学
では「帰無仮説は不当であり、普通の現象が観測された。」と考える。

•帰無仮説が妥当ではないと判断することを、帰無仮説を『棄却する』という。
•帰無仮説できないと判断することを、帰無仮説を『受容する』という。
•帰無仮説の妥当性に対し統計的基準を用いて判断することを『統計的検定』という。
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2.4 仮説検定 2 正規分布

2.4.1 有意水準
•帰無仮説が正しいと仮定したときの観測された現象の珍しさの程度を『有意水準』とい
い、αであらわす。

•有意水準 αは正値であり、5%, 1%が良くとられる。
•Pr(Z ≧ t) ≦ αを満たす最小の tを『臨界値』という。
•標準正規分布において α = 5%のとき臨界値は、およそ、t = 1.96である。
•信頼区間 (27) の外側の区間を『棄却域』という。
•X = x ∼ N(µ, σ2)の α = 5%の棄却域 wは

w =
{

x
∣∣x < µ − 1.96 σ, x > µ + 1.96 σ

}である。 (28)
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2.4 仮説検定 2 正規分布
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2.4 仮説検定 2 正規分布
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