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7 ベクトルの内積

7 ベクトルの内積

7.1 はじめに
•ベクトル同士を掛け合わせる演算を内積
といいます。

•内積で得られるものはスカラーです。
•内積が定義できるとベクトルの長さのよ
うなものが定義できます。

•内積が定義できるとベクトル間の角度が

定義できます。

7.1.1 ポイント
•内積
•ノルム
•角度
•直交
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7.2 ベクトルの内積 7 ベクトルの内積

7.2 ベクトルの内積
定義� �

2つの n次元ベクトル a =
(

a1 a2 · · · an

)
, b =

(
b1 b2 · · · bn

)
に対して

⟨a, b⟩ = a1b1 + a2b2 + · · · + anbn (1)

によって定まる値 ⟨a, b⟩ を aと bの内積という。� �
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7.2 ベクトルの内積 7 ベクトルの内積
定理 IV−7 − 1� �
内積は次の性質を持つ。

(i) ⟨a, b⟩ = ⟨b, a⟩
(ii) ⟨a1 + a2, b⟩ = ⟨a1, b⟩ + ⟨a2, b⟩
(iii) ⟨αa, b⟩ = α⟨a, b⟩ ; αは任意のスカラー
(iv) ⟨a, a⟩ ≧ 0

a ̸= 0ならば、⟨a, a⟩ > 0� �
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7.2 ベクトルの内積 7 ベクトルの内積

証明
(i)

a =
(

a1 a2 · · · an

)
(2)

b =
(

b1 b2 · · · bn

)
(3)

とする。内積の定義により

⟨a, b⟩ = a1b1 + a2b2 + · · · + anbn (4)

⟨b, a⟩ = b1a1 + b2a2 + · · · + bnan (5)

である。右辺各項は交換法則により

aibi = biai (6)

が成り立つから、その和である右辺は等し
い。従って

⟨a, b⟩ = ⟨b, a⟩ (7)

(終)
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7.2 ベクトルの内積 7 ベクトルの内積

(ii)

a1 =
(

a11 a12 · · · a1n

)
(8)

a2 =
(

a21 a22 · · · a2n

)
(9)

b =
(

b1 b2 · · · bn

)
(10)

とする。ベクトルの和は

a1 + a2 =
(

a11 + a21 a12 + a22 · · · a1n + a2n

)
(11)

である。
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7.2 ベクトルの内積 7 ベクトルの内積

内積の定義により

⟨a1 + a2, b⟩ = (a11 + a21) b1 + (a12 + a22) b2 + · · · + (a1n + a2n) bn (12)

= a11b1 + a21b1 + a12b2 + a22b2 + · · · + a1nbn + a2nbn (13)

= (a11b1 + a12b2 + · · · + a1nbn) + (a21b1 + a22b2 + · · · + a2nbn) (14)

= ⟨a1, b⟩ + ⟨a2, b⟩ (15)

(終)
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7.2 ベクトルの内積 7 ベクトルの内積

(iii)
αを任意のスカラーとし

a =
(

a1 a2 · · · an

)
(16)

b =
(

b1 b2 · · · bn

)
(17)

とする。スカラー倍は

α a = α
(

a1 a2 · · · an

)
(18)

=
(

αa1 αa2 · · · αan

)
(19)

である。

⟨αa, b⟩ = αa1b1 + αa2b2 + · · · + αanbn (20)

= α (a1b1 + a2b2 + · · · + anbn) (21)

= α⟨a, b⟩ (22)

(終)
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7.2 ベクトルの内積 7 ベクトルの内積

(iv)

a =
(

a1 a2 · · · an

)
(23)

とする。

⟨a, a⟩ = a1
2 + a2

2 + · · · + an
2 (24)

右辺各項は ai
2 ≧ 0なのでその和は非負であ

る。従って

⟨a, a⟩ ≧ 0 (25)

また、a ̸= 0ならば、(32)右辺のどれかは 0
ではないから

⟨a, a⟩ > 0 (26)

(終)
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7.2 ベクトルの内積 7 ベクトルの内積

問題 IV−7 − 1
以下の計算をしなさい。

(1) ⟨a1 + a2, b1 + b2⟩
(2) ⟨αa1 + a2, βb1 + b2⟩
(3) ⟨αa1 + a2, αa1 + a2⟩
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7.2 ベクトルの内積 7 ベクトルの内積

解例 IV−7 − 1

(i) 定理 IV−7 − 1(ii)において

b = b1 + b2

とすると

⟨a1 + a2, b1 + b2⟩ = ⟨a1, b1 + b2⟩ + ⟨a2, b1 + b2⟩

= ⟨a1, b1⟩ + ⟨a1, b2⟩ + ⟨a2, b1⟩ + ⟨a2, b2⟩
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7.2 ベクトルの内積 7 ベクトルの内積

(ii) (i)より

⟨αa1 + a2, βb1 + b2⟩ = ⟨αa1, βb1⟩ + ⟨αa1, b2⟩ + ⟨a2, βb1⟩ + ⟨a2, b2⟩

= αβ⟨a1, b1⟩ + α⟨a1, b2⟩ + β⟨a2, b1⟩ + ⟨a2, b2⟩

(iii) (ii)より

⟨αa1 + a2, αa1 + a2⟩ = αα⟨a1, a1⟩ + α⟨a1, a2⟩ + α⟨a2, a1⟩ + ⟨a2, a2⟩

= α2⟨a1, a1⟩ + 2α⟨a1, a2⟩ + ⟨a2, a2⟩
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7.3 ノルム 7 ベクトルの内積

7.3 ノルム
定義� �√

⟨a, a⟩ を aのノルムといい、∥a∥とあらわす。a =
(

a1 a2 · · · an

)
のとき

∥a∥ =
√

⟨a, a⟩ =
√

a12 + a22 + · · · + an
2 (27)

である。� �
あるいは長さあるいは大きさともいう。
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7.3 ノルム 7 ベクトルの内積

R2の 2次元ベクトル a =
(

a1 a2

)
に対し

ては、O を座標の原点とし、点 A の座標を
(a1, a2)とすると、aは座標平面における有
向線分 −→

OA である。

∥a∥ =
√

a12 + a22 (28)

が−→
OAのノルムになっていることはPythago-

rasの定理により明らかである。

図 1 R2 のベクトルのノルム

A

a1

a2

a

O
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7.3 ノルム 7 ベクトルの内積

R3の 3次元ベクトル a =
(

a1 a2 a3

)
に

対しては、Oを座標の原点とし、点Aの座標
を (a1, a2, a3)とすると、aは座標空間にお
ける有向線分 −→

OA である。

∥a∥ =
√

a12 + a22 + a32 (29)

が −→
OAのノルムになっている。

図 2 R3 のベクトルのノルム

a1

a2

a3

A = (a1, a2, a3)
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7.3 ノルム 7 ベクトルの内積
定理 IV−7 − 2� �
内積,ノルムに関して以下の関係が成り立つ。

(i) |⟨a, b⟩| ≦ ∥a∥∥b∥ (Schwarzの不等式)
等式が成り立つのは aと bが線型従属の場合に限る。

(ii) ∥a + b∥ ≦ ∥a∥ + ∥b∥ (Minkovskiの不等式)
等式が成り立つのは t ≧ 0で b = taまたは a = tbを満たす tが存在する場合に
限る。� �
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7.3 ノルム 7 ベクトルの内積

証明
(i) tを実数値をとる変数として 2次関数

⟨at + b, at + b⟩ = ⟨a, a⟩t2 + 2⟨a, b⟩t + ⟨b, b⟩ (30)

を考える。定理 IV−7 − 1(iv)により、

⟨at + b, at + b⟩ ≧ 0 (31)

だから、

⟨a, a⟩t2 + 2⟨a, b⟩t + ⟨b, b⟩ ≧ 0 (32)
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7.3 ノルム 7 ベクトルの内積

が成り立つ。全ての tに関して (32)が成り立つから、(32)左辺の 2次関数の判別式1）の値は
非正である。よって、

⟨a, b⟩2 − ⟨a, a⟩⟨b, b⟩ ≦ 0 (33)

⟨a, b⟩2 ≦ ⟨a, a⟩⟨b, b⟩ (34)

⟨a, b⟩2 ≦ ∥a∥2 ∥b∥2 (35)

(35)の両辺の平方根をとれば (i)が得られる。

1） a ̸= 0のとき、ax2 + 2bx + c = 0の解は x =
−b ±

√
b2 − ac

a
である。この時の分子第 2項根号の中を判別式と

いう。
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7.3 ノルム 7 ベクトルの内積

ここで

⟨a, b⟩2 = ⟨a, a⟩⟨b, b⟩ (36)

が成り立つ場合を考える。

a = 0の場合

(36)左辺 = ⟨0, b⟩2 = 02 = 0 (37)

(36)右辺 = ⟨0, 0⟩⟨b, b⟩ = 0⟨b, b⟩ = 0 (38)

なので、(36)は成り立つ。

定理 IV−7 − 2より、

a = 0 (39)

は単独で線型従属であるから、定理 IV−4 − 5
系 2により a, bは線型従属である。

a ̸= 0の場合
a ̸= 0の時に (36)が成り立つとすれば、2
次方程式

⟨a, a⟩t2 + 2⟨a, b⟩t + ⟨b, b⟩ = 0 (40)
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7.3 ノルム 7 ベクトルの内積

の判別式は 0になるから、この 2次方程式は
実数解（重解）を持つ。従って、

⟨at + b, at + b⟩ = 0 (41)

を満たす tが存在して、この tに対して、

at + b = 0 (42)

が成立する。よって a, b は線型従属であ
る。(終)

(ii)

∥a + b∥2 = ⟨a + b, a + b⟩ (43)

= ⟨a, a⟩ + 2⟨a, b⟩ + ⟨b, b⟩ (44)

= ∥a∥2 + 2⟨a, b⟩ + ∥b∥2 (45)

(∥a∥ + ∥b∥)2 = ∥a∥2 + 2∥a∥∥b∥ + ∥b∥2 (46)

である。

⟨a, b⟩ ≦
∣∣⟨a, b⟩

∣∣ (47)
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7.3 ノルム 7 ベクトルの内積

だから、(i)により、

⟨a, b⟩ ≦
∣∣⟨a, b⟩

∣∣ ≦ ∥a∥∥b∥ (48)

である。よって、(45)と (46)右辺との間には

∥a∥2 + 2⟨a, b⟩ + ∥b∥2 ≦ ∥a∥2 + 2∥a∥∥b∥ + ∥b∥2 (49)

が成立する。よって

∥a + b∥2 ≦ (∥a∥ + ∥b∥)2 (50)

が成立し、両辺の平方根をとれば (ii)が成立する。
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7.3 ノルム 7 ベクトルの内積

等号が成り立つのは

⟨a, b⟩ = ∥a∥∥b∥ (51)

となる場合である。これは (i)が等号で成り
立つ場合である。このとき (36)が成り立っ
て a, bは線型従属になる。
従って、

b = ta (52)

a = tb (53)

を満たす tが存在する。

a ̸= 0, b ̸= 0 であれば、

⟨a, b⟩ = ∥a∥∥b∥ > 0 (54)

であるから、

t > 0 (55)

である。
a = 0であれば

a = 0b (56)
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7.3 ノルム 7 ベクトルの内積

となるし、b = 0であれば

b = 0a (57)

となるから

t = 0 (58)

と取ればよい。
いずれにしろ、

b = ta (52)

a = tb (53)

となる

t ≧ 0 (59)

が存在する。
逆に、b = taあるいは a = tbとなる t ≧ 0
があれば

⟨a, b⟩ = ∥a∥∥b∥ (60)

は成立する。
(終)
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7.3 ノルム 7 ベクトルの内積
定理 IV−7 − 2系� �
任意の実数 a1, a2, · · · , an, , b1, b2, · · · , bn, に対して

(a1b1 + a2b2 + · · · + anbn)2 ≦
(
a1

2 + a2
2 + · · · + an

2) (
b1

2 + b2
2 + · · · + bn

2)
(61)

が成立する。この不等式も Schwarzの不等式といわれている。� �
証明

a =
(

a1 a2 · · · an

)
(62)

b =
(

b1 b2 · · · bn

)
(63)
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7.3 ノルム 7 ベクトルの内積

とおく。定理 IV−7 − 2(i)により
∣∣a1b1 + a2b2 + · · · + anbn

∣∣ ≦ √
a12 + a22 + · · · + an

2
√

b1
2 + b2

2 + · · · + bn
2 (64)

両辺を二乗すると

(a1b1 + a2b2 + · · · + anbn)2 ≦
(
a1

2 + a2
2 + · · · + an

2) (
b1

2 + b2
2 + · · · + bn

2)
(61)

を得る。（終）
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7.4 ベクトル間の角度 7 ベクトルの内積

7.4 ベクトル間の角度
内積を用いるとベクトル間の角度を与える
式を求めることができる。

7.4.1 第 2余弦法則
△OAB において、∠AOB = θ , OA = a ,

OB = b , AB = cとすれば

c2 = a2 + b2 − 2ab cos θ (65)

が成立する。

図 3 第 2余弦法則

A

O B

a

b

c

θ
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7.4 ベクトル間の角度 7 ベクトルの内積

証明
Aから OB におろした垂線の足を Dとし、

AD = x, BD = y とおく。AD⊥OB だから、
c2 = x2 + y2 そして、x = a sin θ であって、
b − y = a cos θ だから、y = b − a cos θなので

c2 = x2 + y2 (66)

= (a sin θ)2 + (b − a cos θ)2 (67)

= a2 sin2 θ + a2 cos2 θ + b2 − 2b cos θ (68)

= a2 + b2 − 2b cos θ （終） (65)

図 4 Aから OB におろした垂線

A

O B
D

x

yb − y

a

b

c

θ
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7.4 ベクトル間の角度 7 ベクトルの内積

7.4.2 ベクトル間の角度
座標平面上において、2 次元ベクトル

a =
(

a1 a2

)
, b =

(
b1 b2

)
が有向線分

−→
OA,

−−→
OB であらわされているとする。O は

座標の原点である。このとき、−→
OAと −−→

OB の
間の角度を『aと bの間の角度』として定義
する。ここで θは

0 ≦ θ ≦ π (69)

の範囲で考える。

図 5 ベクトル間の角度

O

A

B

a

b

θ

最上資料館 29/40



7.4 ベクトル間の角度 7 ベクトルの内積
−→
OAのノルムは

∥a∥ =
√

a12 + a22 (70)

−−→
OB のノルムは

∥b∥ =
√

b1
2 + b2

2 (71)

である。−−→
BA は a − b であらわすから、−−→

BA

のノルムは

∥a − b∥ =
√

(a1 − b1)2 + (a2 − b2)2 (72)

である。ここで第 2余弦法則を使う。

図 6 ベクトル間の角度

O

A

B

a

b

a −
b

θ

最上資料館 30/40



7.4 ベクトル間の角度 7 ベクトルの内積

△OAB に第 2余弦法則を使うと、OA = ∥a∥, OB = ∥b∥, AB = ∥a − b∥だから

∥a − b∥2 = ∥a∥2 + ∥b∥2 − 2∥a∥∥b∥ (73)

が成立する。よって

(a1 − b1)2 + (a2 − b2)2 = a1
2 + a2

2 + b1
2 + b2

2 − 2∥a∥∥b∥ cos θ (74)

��a1
2 − 2a1b1 +��b1

2 +��a2
2 − 2a2b2 +��b2

2 =��a1
2 +��a2

2 +��b1
2 +��b2

2 − 2∥a∥∥b∥ cos θ (75)

a1b1 + a2b2 = ∥a∥∥b∥ cos θ (76)
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7.4 ベクトル間の角度 7 ベクトルの内積

左辺は aと bの内積 ⟨a, b⟩だから

⟨a, b⟩ = ∥a∥∥b∥ cos θ (77)

cos θ = ⟨a, b⟩
∥a∥∥b∥

(78)

が得られる。
3次元ベクトル a =

(
a1 a2 a3

)
, b =

(
b1 b2 b3

)
のときも全く同様にして (78)を導くこ

とができる。定理 IV−7 − 2(i)Schwarzの不等式により、a, bが n次元ベクトルの時でも (78)
右辺の絶対値が 1を超えないから a, bを与えれば (65)を満たす

θ ; 0 ≦ θ ≦ π

は一意的に定まる。
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7.4 ベクトル間の角度 7 ベクトルの内積
定義� �

2つの n次元ベクトル aと bに対して

cos θ = ⟨a, b⟩
∥a∥∥b∥

(78)

を満たす θは 0 ≦ θ ≦ πの範囲で一意的に定まる。この θを aと bの間の角度という。� �

最上資料館 33/40



7.4 ベクトル間の角度 7 ベクトルの内積

例
a =

(
0 1

)
, a =

(
1

√
3
)
とすれば

∥a∥ = 1 (79)

∥b∥ = 2 (80)

⟨a, b⟩ =
√

3 (81)

cos θ = ⟨a, b⟩
∥a∥∥b∥

=
√

3
2

(82)

0 ≦ θ ≦ π だから

θ = π

6
(83)
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7.4 ベクトル間の角度 7 ベクトルの内積

(78)において ∥a∥ > 0, ∥b∥ > 0であるから ⟨a, b⟩ の符号と cos θの符号は一致する。よって

⟨a, b⟩ > 0 ⇐⇒ cos θ > 0 ⇐⇒ 0 ≦ θ ≦ π

2
(84)

⟨a, b⟩ = 0 ⇐⇒ cos θ = 0 ⇐⇒ θ = π

2
(85)

⟨a, b⟩ < 0 ⇐⇒ cos θ < 0 ⇐⇒ π

2
≦ θ ≦ π (86)

が成立する。⟨a, b⟩の値の正,0,負に応じて θが鋭角か直角か鈍角かが決まる。
⟨a, b⟩ = 0のとき aと bは直交するといい

a⊥b (87)

とあらわす。
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7.4 ベクトル間の角度 7 ベクトルの内積

ゼロ・ベクトル 0はどんな aに対しても ⟨0, a⟩ = 0であるから『ゼロ・ベクトルは全てのベ
クトルと直行する』と約束する。

例

a =
(

1 −1 2 −1
)

(88)

b =
(

−3 1 1 −2
)

(89)

とすると

⟨a, b⟩ = (1)(−3) + (−1)(1) + (2)(1) + (−1)(−2) = 0 (90)

であるから aと bは直交する。

最上資料館 36/40



7.4 ベクトル間の角度 7 ベクトルの内積

7.4.3 計量ベクトル空間
内積が定義されているベクトル空間を計量
ベクトル空間という。内積が定義されれば

∥a∥ =
√

⟨a, b⟩ (91)

によって a のノルム ∥a∥ を定義するこ
とができる。この場合であっても定理
IV−7−1(i)(ii)はそのまま成立する。従って、

∣∣⟨a, b⟩
∣∣ ≦ ∥a∥∥b∥ (92)

が成り立つから

⟨a, b⟩ = ∥a∥∥b∥ cos θ (93)

を満たす θ ; 0 ≦ θ ≦ π を一意的に定めるこ
とができる。この θを aと bの間の角度と定
義する。
このとき

⟨a, b⟩ = 0 (94)

である aと bは直交するという。

最上資料館 37/40



7.5 まとめ 7 ベクトルの内積

7.5 まとめ
•2つの n次元ベクトル

a =
(

a1 a2 · · · an

)
と

b =
(

b1 b2 · · · bn

)
に対して

⟨a, b⟩ = a1b1 + a2b2 + · · · + anbn

によって定まる値を a と b の内積と
いう。

•
√

⟨a, a⟩を aのノルムといい、∥a∥であ
らわす。

•2つの n次元ベクトル aと bに対して、
0 ≦ θ ≦ πの範囲で

cos θ = ⟨a, b⟩
∥a∥∥b∥

を満たす θを aと bの間の角度という。
•内積が

⟨a, b⟩ = 0

である aと bは直交するといい a⊥bと
あらわす。
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