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4 線型独立・線型従属

4 線型独立・線型従属

4.1 はじめに
•定義を理解することは重要です。
•覚えることは重要ですが、覚えるだけで
は理解にたどり着きません。

•定義からいくつかのことを導きます。
•それを通じて、定義を深く理解します。

4.1.1 ポイント
•命題の否定
•否定の否定
•命題と対偶
•線型独立と線型従属
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4.1 はじめに 4 線型独立・線型従属

4.1.2 命題とは
•正しいか、正しくないかを数学的に判断
できる文のことをいう。

•P を条件,Qを結論として

P =⇒ Q (1)

とあらわす。
•命題が正しい場合、その命題は『　

しん
真　』で

あるといい、正しくない場合、その命題
は『　

ぎ
偽　』であるという。

•真の場合、正しいことを示さなくてはな

らない。
•偽の場合、反例を上げることで偽である
ことが示される。

4.1.3 命題の否定
•文章の内容を打ち消すことを『否定』と
いう。

•P の否定を P C とあらわし、Qの否定を
QC とあらわす。
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4.1 はじめに 4 線型独立・線型従属

4.1.4 否定の否定
否定の否定は、

(
P C

)C (2)

である。そして、P の否定の否定は P で
ある。

4.1.5 命題と対偶
命題を

P =⇒ Q (1)

とすると、

QC =⇒ P C (3)

を『　
たいぐう
対偶　』という。

命題と対偶の真偽は一致する。
命題が真であることを示す場合、対偶が真
であることを示せばよい。
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4.1 はじめに 4 線型独立・線型従属

4.1.6 線型結合
m個のベクトル1）

a1, a2, · · · , am (4)

が与えられたとき、m個のスカラー2）

α1, α2, · · · αm (5)

に対して

1） ベクトルは太字の小文字であらわす。
2） スカラーは細字の小文字であらわす。

α1a1 + α2a2 + · · · + αmam (6)

の形にかかれるベクトルを a1, a2, · · · , am

の『線型結合』という。α1, α2, · · · αm を、
この線型結合の『係数』という3）。

3） 係数の場合、基本的にギリシャ文字をつかってあ
らわす。
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4.1 はじめに 4 線型独立・線型従属

問題 IV−4 − 1

a =
(

1 2 3
)

, b =
(

4 5 6
)

, c =
(

7 2 9
)

とする。

(i) aを b,cの線型結合としてあらわしなさい。
(ii) bを a,cの線型結合としてあらわしなさい。
(iii) cを a,bの線型結合としてあらわしなさい。
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4.1 はじめに 4 線型独立・線型従属

解例 IV−4 − 1

(i) a = 2b − c

(ii) b = 1
2

a + 1
2

c

(iii) c = −a + 2b
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4.2 線型独立・線型従属 4 線型独立・線型従属

4.2 線型独立・線型従属

4.2.1 線型従属
3つのベクトル

a =
(

1 2 3
)

(7)

b =
(

4 5 6
)

(8)

c =
(

7 2 9
)

(9)

をとる。

これら 3つのベクトルの間には

a = 2b − c (10)

b = 1
2

a + 1
2

c (11)

c = −a + 2b (12)

の関係があることが確認できる。a, b, cの
うちの 1つを、その他の 2つのベクトルの線
型結合としてあらわすことができる。
線型結合による相互の結びつきがあるベク
トルの集合は『線型従属』であるという。
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4.2 線型独立・線型従属 4 線型独立・線型従属

4.2.2 R3 の基本単位ベクトルの線型結合
R3 の基本単位ベクトル

e1 =
(

1 0 0
)

(13)

e2 =
(

0 1 0
)

(14)

e3 =
(

0 0 1
)

(15)

では、これらのうちの 1つ、例えば e3を、そ
の他の 2つのベクトル e1, e2 の線型結合と
してあらわすことはできない。

e1, e2 の線型結合は全て

α1e1 + α2e2 =
(

α1 α2 0
)

(16)

とあらわすことができるが、(16) の第 3
成分は必ず 0 になっている。一方、(15) の
第 3 成分は 1 なので、e3 を α1e1 + α2e2 と
あらわすことはできない。同様に e1 を
α2e2 + α3e3 とあらわすことはできないし、
e2 を α1e1 + α3e3 とあらわすこともでき
ない。
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4.2 線型独立・線型従属 4 線型独立・線型従属

4.2.3 線型独立
m個のベクトル

a1, a2, · · · , am (4)

が与えられたとき、これらの間に線型結合に
よる相互の結びつき（従属関係）があると
き、これらのベクトルは『線型従属』である
といい、この種の従属関係がないとき、これ
らのベクトルは『線型独立』であるという。

(4)のベクトルの間に従属関係があるかど
うかは、(4)のベクトルのうちの少なくとも

1つが、その他のm − 1個のベクトルの線型
結合としてかけるかどうかによって判定さ
れる。
ところで、上記の表現によって『線型従
属』『線型独立』を定義するとベクトルの個
数がm ≧ 2である場合に限られる。4）

4） m = 1の場合に「その他のm − 1個のベクトル」
が存在しないから。
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4.2 線型独立・線型従属 4 線型独立・線型従属
定義� �
ベクトル　a1, a2, . . . , am に対して

α1a1 + α2a2 + · · · + αmam = 0 (17)

が成り立つのは

α1 = α2 = · · · = αm = 0 (18)

に限るとき、a1, a2, . . . , am は『線型独立』であるという。
a1, a2, . . . , am が線型独立でないとき『線型従属』であるという。� �
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4.2 線型独立・線型従属 4 線型独立・線型従属

従って、線型従属とは

(i) 係数 α1, α1, · · · , α1 の中に 0でないものがある
(ii) α1a1 + α2a2 + · · · + αmam = 0 が成り立つ

を同時に満たす場合をいう。

4.2.4 命題と対偶（再）
「線型独立でないならば線型従属である。」に対する対偶は「線型従属でなければ、線型独立
である。」である。
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4.2 線型独立・線型従属 4 線型独立・線型従属

4.2.5 ベクトルが線型独立であることの証明方法
与えられたベクトルが線型独立であることを証明するためには

α1a1 + α2a2 + · · · + αmam = 0 (17)

となるように、係数を選んだと仮定して、この仮定から

α1 = α2 = · · · = αm = 0 (18)

という結論を導くことができればよい。
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4.3 定理 IV−4 − 1 4 線型独立・線型従属

4.3 定理 IV−4 − 1

m ≧ 2とする。このとき

(i) a1, a2, · · · , am が『線型従属』であるための必要十分条件は、これらのうちの少なく
とも 1つ ak を、その他の m − 1個のベクトルの線型結合としてあらわすことができ
ることである。

(ii) a1, a2, · · · , am が『線型独立』であるための必要十分条件は、これらのうちの少なく
とも 1つ ak を、その他のm − 1個のベクトルの線型結合としてあらわすことはできな
いことである。
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4.3 定理 IV−4 − 1 4 線型独立・線型従属

証明
(i) 必要性の証明

a1, a1, · · · , am ; m ≧ 2が線型従属であるとする。
このとは 0でない数を含む係数の組

α1, α2, · · · , αm (5)

を (17)が成り立つように選ぶことができる。
そこで (5)のうちの 0でない数の 1つが αk であるとする。

α1a1 + · · · + αk−1ak−1 + αkak + αk+1ak+1 + · · · + αmam = 0 ; ak ̸= 0 (19)

が成り立っている。
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4.3 定理 IV−4 − 1 4 線型独立・線型従属

αkak 以外の項を右辺に移項すると、

αkak = −α1a1 − · · · − αk−1ak−1 − αk+1ak+1 − · · · − αmam (20)

αk ̸= 0なので両辺を αk で割ることができる。すると

ak = − α1

αk
a1 − · · · − αk−1

αk
ak−1 − αk+1

αk
ak+1 − · · · − αm

αk
am (21)

である。これは、ak がその他の a1, · · · ak−1, ak+1, · · · , am の線型結合になっていること
を示している。
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4.3 定理 IV−4 − 1 4 線型独立・線型従属

(i) 十分性の証明
ak がその他のm − 1個のベクトルの線型結合として

ak = α1a1 + · · · + αk−1ak−1 + αk+1ak+1 + · · · + αmam (22)

とあらわされたとする。左辺を右辺に移項すると

α1a1 + · · · + αk−1ak−1 + (−1)ak + αk+1ak+1 + · · · + αm = 0 (23)

となる。
この式は

α1, · · · , αk−1, −1, αk+1, · · · , αm (24)
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4.3 定理 IV−4 − 1 4 線型独立・線型従属

を係数とする a1, a2, · · · , am の線型結合が 0になることを示している。0を含まない数を含
む係数の組によって (17)が成り立つことになるから、a1, a2, · · · , am は線型従属である。

(ii) 証明
線型従属でないときが線型独立なのであるから (i)から明らかである。

（終）
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4.4 定理 IV−4 − 2 4 線型独立・線型従属

4.4 定理 IV−4 − 2

(i) ただ 1つのベクトル aが線型従属であるための必要十分条件は

a = 0 (25)

であることである。
(ii) ただ 1つのベクトル aが線型独立であるための必要十分条件は

a ̸= 0 (26)

であることである。
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4.4 定理 IV−4 − 2 4 線型独立・線型従属

証明
必要性の証明

aが線型従属であれば、α ̸= 0を

αa = 0 (27)

となるように選ぶことができる。両辺を α

で割れば

a = 0 (28)

を得る。

十分性の証明
a = 0であれば、α ̸= 0に対して

αa = α0 (29)

= 0 (30)

である。よって 0は線型従属である。

(終)
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4.5 定理 IV−4 − 3 4 線型独立・線型従属

4.5 定理 IV−4 − 3

m個のm次元ベクトル

a1 =
(

a11 a12 · · · a1m

)
(31)

a2 =
(

a21 a22 · · · a2m

)
(32)

...
...

am =
(

am1 am2 · · · amm

)
(33)

を行として行列式を作ったとき∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0 (34)

であれば、a1, a2, · · · , am は線型独立で
ある。
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4.5 定理 IV−4 − 3 4 線型独立・線型従属

証明

α1a1 + α2a2 + · · · + αmam = 0 (17)

となるように、α1, α2, · · · , αm を選ぶ。
この関係を各成分ごとに書くと、

α1a11 + α2a21 + · · · + αmam1 = 0 (35)

α1a12 + α2a22 + · · · + αmam2 = 0 (36)
...

α1a1n + α2a2n + · · · + αmamm = 0 (37)

これは、α1, α2, · · · , αm を未知数とする
同次連立 1次方程式である。
仮定により左辺の係数の行列式は 0ではな
いから Cramerの公式により解を求めれば、

α1 = α2 = · · · = αm = 0 (18)

となる。
よって a1, a2, · · · , am は線型独立で
ある。
（終）
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4.5 定理 IV−4 − 3 4 線型独立・線型従属

4.5.1 定理 IV−4 − 3の逆
a1, a2, · · · , am は線型独立であるとし

b1 = α11a1 + α12a2 + · · · + α1mam (38)

b2 = α21a1 + α22a2 + · · · + α2mam (39)
...

bm = αm1a1 + αm2a2 + · · · + αmmam (40)

とおく。

このとき∣∣∣∣∣∣∣∣∣∣∣∣

α11 α12 · · · α1m

α21 α22 · · · α2m

...
...

. . .
...

αm1 αm2 · · · αmm

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0 (41)

であれば、b1, b2, · · · , bm は線型独立で
ある。
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4.5 定理 IV−4 − 3 4 線型独立・線型従属

証明

β1b1 + β2b2 + · · · + βmbm = 0　 (42)

となるように、β1, β2, · · · , βm を選ぶ。
b1, b2, · · · bm の定義式 (38) (39) · · · (40)

を (42)左辺に代入すると

β1(α11a1 + α12a2 + · · · + α1mam)

+ β2(α21a1 + α22a2 + · · · + α2mam) + · · ·

+ βm(αm1a1 + αm2a2 + · · · + αmmam)

= 0 (43)

を得る。この左辺を a1, a1, · · · , am につ
いてまとめる。すると、

(β1α11 + β2α21 + · · · + βmαm1)a1

+ (β1α11 + β2α22 + · · · + βmαm2)a2 + · · ·

+ (β1α1m + β2α2m + · · · + βmαmm)am

= 0 (44)

となるが、仮定により、a1, a2, · · · , amは
線型独立であった。
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4.5 定理 IV−4 − 3 4 線型独立・線型従属

よって、

β1α11 + β2α21 + · · · + βmαm1 = 0 (45)

β1α11 + β2α22 + · · · + βmαm2 = 0 (46)
...

β1α1m + β2α2m + · · · + βmαmm = 0 (47)

でなくてはならない。
これは、β1, β2, · · · , βm を未知数とする
同次連立１次方程式である。
係数の行列式 (41)は仮定により 0ではな

いから、

β1 = β2 = · · · = βm = 0 (48)

である。よって、b1, b2, · · · , bm は線型独
立である。
（終）
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4.6 定理 IV−4 − 4 4 線型独立・線型従属

4.6 定理 IV−4 − 4

a1, a2, · · · , am が線型独立であるとき

α1a1 + α2a2 + · · · + αmam = β1a1 + β2a2 + · · · + βmam (49)

であれば、

α1 = β1, α2 = β2, · · · , αm = βm (50)

である。
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4.6 定理 IV−4 − 4 4 線型独立・線型従属

証明
(49)の右辺を左辺に移項して a1, a2, · · · , am についてまとめると。

(α1 − β1)a1 + (α2 − β2)a2 + · · · + (αm − βm)am = 0 (51)

をなる。仮定により、a1, a2, · · · , am が線型独立であるから

α1 − β1 = 0, α2 − β2 = 0, · · · , αm − βm = 0 (52)

でなくてはならない。よって

α1 = β1, α2 = β2, · · · , αm = βm (50)

である。（終）
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4.7 定理 IV−4 − 5

a1, a2, · · · , am が線型独立であれば、これらのうちの一部分 ai1, ai2, · · · , aik は線型独
立である。
証明

α1ai1 + α2ai2 + · · · + αmaik = 0 (53)

となるように α1, α2, · · · , αikを選ぶ。(53)の左辺に、a1, a2, · · · , amの ai1, ai2, · · · , aik

以外のベクトルに係数 0をかけたものを加えてもやはり 0だから

0a1 + · · · + αi1ai1 + · · · + 0aj + · · · + ai2 + · · · + αikaik + · · · + 0am = 0 (54)
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が成り立つ。
a1, a2, · · · , am は線型独立だから、(54)の係数は全て 0でなくてはならない。よって、

ai1 = ai2 = · · · = aik = 0 (55)

となるから、ai1, ai2, · · · , aik は線型独立である。（終）
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4.7.1 定理 IV−4 − 5系 1
a1, a2, · · · , am の一部分 ai1, ai2, · · · , aik が線型従属であれば、a1, a2, · · · , am は線
型従属である。
証明
定理 IV−4 − 5の対偶は、
「a1, a2, · · · , am の一部分 ai1, ai2, · · · , aik が線型独立でないならば、a1, a2, · · · , am

は線型独立でない。」
である。これが系 1の命題である。
命題と対偶の真偽は一致する。定理 IV−4 − 5が成り立つのだから対偶命題である本命代も
成り立つ。（終）
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4.7.2 定理 IV−4 − 5系 2
a1, a2, · · · , am の中に 0が含まれていれば、a1, a2, · · · , am は線型従属である。

証明

•定理 IV−4 − 2より、0は単独で線型従属である。
•定理 IV−4 − 5系 1より、線型従属を含めば線型従属である。
•線型従属である 0を含んでいるのだから、a1, a2, · · · , am は線型従属である。

（終）
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4.8 定理 IV−4 − 6

n次元ベクトル

a1 =
(

a11 a12 · · · a1n

)
(56)

a2 =
(

a21 a22 · · · a2n

)
(57)

am =
(

am1 am2 · · · amn

)
(58)
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4.8 定理 IV−4 − 6 4 線型独立・線型従属

のそれぞれに任意に k個の成分を付け加えて n + k次元ベクトル

a1 =
(

a11 a12 · · · a1n b11 b12 · · · b1k

)
(59)

a2 =
(

a21 a22 · · · a2n b21 b22 · · · b2k

)
(60)

am =
(

am1 am2 · · · amn bm1 bm2 · · · bmk

)
(61)

を作る。このとき。a1, a2, · · · , am が線型独立であれば、a1, a2, · · · , am も線型独立で
ある。
新たに付け加えられる成分の位置は、全てのベクトルに対して同じ位置であれば、どこで
あっても構わない。
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証明

α1a1 + α2a2 + · · · + αmam = 0 (62)

となるように α1, α2, · · · , αm をえらぶ。ここで、0は n + k 次元のゼロ・ベクトルである。
両辺の第 1成分から第 n成分までをとれば

α1a1 + α2a2 + · · · + αmam = 0 (63)

となるが、仮定により a1, a2, · · · , am は線型独立なので

α1 = α2 = · · · = αm = 0 (64)

でなくてはならない。よって、a1, a2, · · · , am は線型独立である。（終）
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4.8.1 定理 IV−4 − 6系
n次元ベクトル a1, a2, · · · , am のそれぞれから、同じ位置にある k個の成分を取り去って
得られる n − k次元ベクトルを ã1, ã2, · · · , ãm とする。このとき、a1, a2, · · · , amが線型
従属であれば ã1, ã2, · · · , ãm も線型従属である。

証明
a1, a2, · · · , am は ã1, ã2, · · · , ãm の同じ場所に k個成分を付け加えて作られている。
従って、定理 IV−4 − 6により ã1, ã2, · · · , ãm が線型独立であれば、a1, a2, · · · , am は
線型独立になる。
ところが、仮定により a1, a2, · · · , am は線型従属であるから ã1, ã2, · · · , ãm 線型独立
ではありえない。よって、線型従属である。（終）
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4.9 定理 IV−4 − 7

a1, a2, · · · , am が線型独立であり、これに b を付け加えた集合 a1, a2, · · · , am, b が線
型従属であれば、b は a1, a2, · · · , am の線型結合としてあらわされる。
証明

a1, a2, · · · , am, b が線型従属であるから 0でない数を含む係数 α1, α2, · · · , αm, β を適
当に選んで

α1a1 + α2a2 + · · · + αmam + βb = 0 (65)

とすることができる。このとき β ̸= 0でなくてはならない。
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なぜなら、β = 0であったとすると

α1a1 + α2a2 + · · · + αmam = 0 (66)

となるが、このとき α1, α2, · · · , αm の中に 0 でないものがあることになるから
a1, a2, · · · , am が線型従属になってしまう。このことは a1, a2, · · · , am が線型独立であ
ることと矛盾する。よって β ̸= 0である。(65)の βb以外の項を右辺に移項し、両辺を β で割
ると、

b = −α1

β
a1 − α2

β
a2 − · · · + αm

β
am (67)

となって、bを a1, a2, · · · , am の線型結合としてあらわすことができる。（終）
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4.10 定理 IV−4 − 8

m個のベクトル a1, a2, · · · , am の線型結合をm + 1個作る。
それらを b1, b2, · · · , bm, bm+1 とすれば、b1, b2, · · · , bm, bm+1 は線型従属である。

証明
ベクトルの個数mについての数学的帰納法で証明する。

(i) m = 1のとき、1つのベクトル αの線型結合を 2つ作る。それらを

b1 = α1a (68)

b2 = α2a (69)

最上資料館 41/52



4.10 定理 IV−4 − 8 4 線型独立・線型従属

とする。α1 = 0のときは b1 = 0 となるから、b1 は単独で線型従属である5）。よって
b1, b2 は線型従属である6）。

α1 ̸= 0のときは、(68)は

a = 1
α1

b1 (70)

なので、(69)に代入すると

b2 = α2

α1
b1 (71)

となる。よって、b1, b2 は線型従属である。

5） 定理 IV−4 − 2
6） 定理 IV−4 − 5系 1
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(ii) m = k − 1のとき定理の主張は正しいものと仮定して（帰納法の仮定）、m = kのとき
に定理の主張が正しいことを証明する。
そのために k個のベクトル a1, a2, · · · , ak の線型結合を k + 1個作る。それらを、

b1 = α11a1 + α12a2 + · · · + α1,k−1ak−1 + α1kak (72)

b2 = α21a1 + α22a2 + · · · + α2,k−1ak−1 + α2kak (73)
...

bk = αk1a1 + αk2a2 + · · · + αk,k−1ak−1 + αkkak (74)

bk+1 = αk+1,1a1 + αk+1,2a2 + · · · + αk+1,k−1ak−1 + αk+1,kak (75)

とする。
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ak の係数が全て 0である場合
これらの式の右辺の ak の係数 α1k, α2k, · · · , αkk, αk+1,k がすべて 0 である場合

には b1, b2, · · · , bk, bk+1 はどれも a1, a2, · · · , ak−1 の線型結合になるから、帰
納法の仮定より、このうち k 個 b1, b2, · · · , bk が線型従属になる。線型従属を含む
b1, b2, · · · , bk, bk+1 も線型従属になるから定理は証明されたことになる。
ak の係数の中に 0でないものがある場合
次に、α1k, α2k, · · · , αkk, αk+1,k の中に 0でないものがある場合を考える。一般性

を失うことなく αk+1,k ̸= 0 とする。そして、(75)を αk+1,k で割って、
1

αk+1,k
bk+1 = αk+1,1

αk+1,k
a1 + αk+1,2

αk+1,k
a2 + · · · + αk+1,k−1

αk+1,k
ak−1 + ak (76)

とする。この (76)を使って、それ以外の式から ak を消去する。
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(72)を例にすると
(76)に α1k をかけて (72)から引くと

b1 − α1k

αk+1,k
bk+1 =

(
α11 − αk+1,1α1k

αk+1,k

)
a1 +

(
α12 − αk+1,2α1k

αk+1,k

)
a2

+ · · · +
(

α1,k−1 − αk+1,k−1α1k

αk+1,k

)
ak−1 (77)

ここで、

αij
′ = αij − αk+1,jαik

αk+1,k
(78)
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とおくと、(77)は

b1 − α1k

αk+1,k
bk+1 = α11

′a1 + α12
′a2 + · · · + α1,k−1

′ak−1 (79)

以下同様に、

b2 − α2k

αk+1,k
bk+1 = α21

′a1 + α22
′a2 + · · · + α2,k−1

′ak−1 (80)

...

bk − αkk

αk+1,k
bk+1 = αk1

′a1 + αk2
′a2 + · · · + αk,k−1

′ak−1 (81)

である。これら k個の式の右辺は k − 1個のベクトル a1, a2, · · · , ak−1の線型結合で
あるから、帰納法の仮定より、左辺の k個のベクトルは線型従属である。
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従って 0でない数を含む係数 β1, β2, · · · , βk を適当に選んで

β1

(
b1 − α1k

αk+1,k
bk+1

)
+ β2

(
b2 − α2k

αk+1,k
bk+1

)
+ · · · + βk

(
bk − αkk

αk+1,k
bk+1

)
= 0

(82)

とすることができる。この (82)の左辺を b1, b2, · · · , bk, bk+1 についてまとめ直すと

β1b1 + β2b2 + · · · + βkbk − β1α1k + β2α2k + · · · + βkαkk

αk+1,k
bk+1 = 0 (83)

仮定により β1, β2, · · · , βk の中には 0 ではない数が含まれているから当然
β1, β2, · · · , βk, −β1α1k + β2α2k + · · · + βkαkk

αk+1,k
の中には 0でない数が含まれている。

そして、(83)が成り立つのだから b1, b2, · · · , bk, bk+1 は線型独立である。これで帰
納法は完成した。(終)
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4.10.1 定理 IV−4 − 8系 1
m個のベクトルの線型結合をm + 1以上作れば、それらは線型従属である。
証明

•定理 IV−4 − 8により、m個のベクトルの線型結合をm + 1個作れば、それらは線型従属
である。

•定理 IV−4 − 5系 1により、線型従属を含めば、それらは線型従属である。
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4.10.2 定理 IV−4 − 8系 2
n次元ベクトルを n + 1個以上持ってくれば、それらは線型従属である。
証明
任意の n次元ベクトル (

a1 a2 · · · an

)
(84)

は n個の n次元基本単位ベクトル e1, e2, · · · , en の線型結合として

α1e1 + α2e2 + · · · + αnen (85)

と書くことができる。そして、e1, e2, · · · , en の線型結合として書かれるベクトルをm + 1
個以上持ってくれば、定理 IV−4 − 8系 1により、それらは線型従属である。（終）
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4.11 まとめ
•a1, a2, · · · , am に対して

α1a1 + α2a2 + · · · + αmam = 0

が α1 = α1 = · · · = α1 = 0 に限り成り立つとき『線型独立』という。
•線型独立でないとき、『線型従属』という。
•線型独立・線型従属に関する定理を確認した。
•線型独立・線型従属の理解は重要。
•定理を通じて、線型独立・線型従属の理解を深めることが重要。
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