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3 線型結合

3 線型結合

3.1 はじめに
•ベクトル aとベクトル bの和 a + bを定
義しました。

•ベクトル a とスカラー α との積（スカ
ラー倍）を定義しました。

•この和とスカラー倍を組み合わせた演算
を、ベクトルの『線型結合』といいます。

3.1.1 ポイント
•線型結合
•基本単位ベクトル
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3.2 線型結合 3 線型結合

3.2 線型結合
定義� �

2つのベクトル a, bとスカラー α, β に対して

αa + βb (1)

の形にかけるベクトルを、aと bの『線型結合』という。� �
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3.2 線型結合 3 線型結合

より一般に、m個のベクトル

a1, a2, · · · , am (2)

が与えられたとき、m個のスカラー

α1, α2, · · · αm (3)

に対して

α1a1 + α2a2 + · · · + αmam (4)

の形にかかれるベクトルを a1, a2, · · · , am

の『線型結合』という1）。
α1, α2, · · · αmを、この線型結合の『係数』
という。係数の選び方はいく通りもあるから
(2)のベクトルの線型結合はいく通りも作る
ことができる。

1） 『1次結合』ともいう
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3.2 線型結合 3 線型結合

問題 IV−3 − 1

e1 =
(

1 0 0
)

e1 =
(

0 1 0
)

e1 =
(

0 0 1
)

とする。

a1e1 + a2e2 + a3e3

を求めなさい。
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3.2 線型結合 3 線型結合

解例 IV−3 − 1

a1e1 + a2e2 + a3e3 = a1

(
1 0 0

)
+ a2

(
0 1 0

)
+ a3

(
0 0 1

)
=

(
a1 0 0

)
+

(
0 a2 0

)
+

(
0 0 a3

)
=

(
a1 a2 a3

)
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3.2 線型結合 3 線型結合

3.2.1 例

e1 =
(

1 0 0
)

(5)

e1 =
(

0 1 0
)

(6)

e1 =
(

0 0 1
)

(7)

とすれば、

a =
(

a1 a2 a3

)
(8)

は, e1, e2, e3 の線型結合として、

a = a1e1 + a2e2 + a3e3 (9)

とかくことができる。
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3.3 基本単位ベクトル 3 線型結合

3.3 基本単位ベクトル
eiを、第 i成分が 1で、その他の成分がす
べて 0である n次元ベクトルとする。
すなわち、

e1 =
(

1 0 0 · · · 0
)

(10)

e2 =
(

0 1 0 · · · 0
)

(11)

...
...

en =
(

0 0 0 · · · 1
)

(12)

とする。このとき、n次元ベクトル

a =
(

a1 a2 · · · an

)
(13)

は

a = a1e1 + a2e1 + · · · + anen (14)

と書くことができる。この e1, e2, · · · enを
Rn の『基本単位ベクトル』という。
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3.3 基本単位ベクトル 3 線型結合

3.3.1 例
命題

a1 =
(

a11 a12 a13

)
(15)

a2 =
(

a21 a22 a23

)
(16)

a3 =
(

a31 a32 a33

)
(17)

を並べて作る行列式∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ (18)

の値が 0でないならば、すなわち、∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ ̸= 0 (19)

ならば、任意の

b =
(

b1 b2 b3

)
(20)

を、a1, a2, a3 の線型結合として一意にあ
らわすことができる。
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3.3 基本単位ベクトル 3 線型結合

証明

x1a1 + x2a2 + x3a3 = b (21)

となるように x1, x2, x3の値を定めることが
できればよい。(21)を各辺の成分間の関係と
してあらわせば

x1a11 + x2a12 + x3a13 = b1

x1a21 + x2a22 + x3a23 = b2

x1a31 + x2a32 + x3a33 = b3

(22)

という連立方程式になる。(22)左辺の係数の
行列式が (18) である。仮定により、左辺の
係数の行列式は 0ではないので、Cramerの
公式により x1, x2, x3 の値は一意に決まる。
よって b を a1, a2, a3, の線型結合として
一意的にあらわすことができる。(終)
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3.3 基本単位ベクトル 3 線型結合

問題 IV−3 − 2 ∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ ̸= 0

とする。連立 1次方程式 
x1a11 + x2a12 + x3a13 = b1

x1a21 + x2a22 + x3a23 = b2

x1a31 + x2a32 + x3a33 = b3

を解きなさい。
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3.3 基本単位ベクトル 3 線型結合

解例 IV−3 − 2

x1 =

∣∣∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
, x2 =

∣∣∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
, x3 =

∣∣∣∣∣∣∣∣
a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
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3.3 基本単位ベクトル 3 線型結合

問題 IV−3 − 3
ベクトル

(
7 8 9

)
をベクトル

(
1 2 3

)
,

(
4 5 6

)
の線型結合としてあらわしなさい。
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3.3 基本単位ベクトル 3 線型結合

解例 IV−3 − 3 (
7 8 9

)
= α

(
1 2 3

)
+ β

(
4 5 6

)
(

7 8 9
)

=
(

α 2α 3α
)

+
(

4β 5β 6β
)

(
7 8 9

)
=

(
α + 4β 2α + 5β 3α + 6β

)


7 = α + 4β

8 = 2α + 5β

9 = 3α + 6β

最上資料館 15/22



3.3 基本単位ベクトル 3 線型結合

なので  α = −1

β = 2

よって (
7 8 9

)
= −

(
1 2 3

)
+ 2

(
4 5 6

)
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3.3 基本単位ベクトル 3 線型結合

問題 IV−3 − 4
ベクトル

(
1 2 3

)
をベクトル

(
1 1 0

)
,

(
1 0 1

)
,

(
0 1 1

)
の線型結合としてあら

わしなさい。
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3.3 基本単位ベクトル 3 線型結合

解例 IV−3 − 4 ∣∣∣∣∣∣∣∣
1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣∣∣ = −2

なので 
x1 + x2 + 0 = 1

x1 + 0 + x3 = 2

0 + x2 + x3 = 3

とおく。
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3.3 基本単位ベクトル 3 線型結合

Cramerの公式より

x1 =

∣∣∣∣∣∣∣∣
1 1 0
2 0 1
3 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣∣∣
= 0

−2
= 0, x2 =

∣∣∣∣∣∣∣∣
1 1 0
1 2 1
0 3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣∣∣
= −2

−2
= 1, x2 =

∣∣∣∣∣∣∣∣
1 1 1
1 0 2
0 1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣∣∣
= −4

−2
= 2

よって (
1 2 3

)
= 0

(
1 1 0

)
+ 1

(
1 0 1

)
+ 2

(
0 1 1

)
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3.4 まとめ 3 線型結合

3.4 まとめ
•m個のベクトル ai とm個のスカラー αi によって

α1a1 + α2a2 + · · · + αmam+

とかけるベクトルを a1, a2, · · · , am の『線型結合』という。
•α1, α2, · · · , αm を線型結合の『係数』という。
•第 i成分が 1で、その他の成分が全て 0である n次元ベクトルを『基本単位ベクトル』と
いう。
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3.4 まとめ 3 線型結合
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3.4 まとめ 3 線型結合
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