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5 同次 1次方程式

5 同次 1次方程式

5.1 はじめに
•紹介する内容は理解できると思います。
•なんで、こんな話をしているかは分から
ないと思います。

•天下り的な話の準備なんだと思ってくだ
さい。

•単独な話題としても重要ではあるん

です。

5.1.1 ポイント
•命題と対偶
•同次連立 1次方程式
•同次連立 1次方程式のときの Cramerの
公式

•消去法の原理
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5.1 はじめに 5 同次 1次方程式

5.1.2 行列式の定義
n次の行列式を∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
(p1,p1,··· ,pn)

　ε(p1, p2, · · · , pn)a1p1a2p2 · · · anpn (1)

で定義する。
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5.1 はじめに 5 同次 1次方程式

5.1.3 行列式の基本性質
•行列式の行と列を入れ替えた行列式の値は等しい（性質 1）。
•行列式の 2つの行を入れ替えると、行列式の符号が逆になる（性質 2）。
•2つの行が同じである行列式の値は 0である (性質 2系)。
•行列式の 1つの行が共通因数 αをもてば、行列式の外に括りだすことができる。(性質 3)。
•行列式の 1つの行の全ての成分が 0であれば行列式の値は 0である。(性質 3系)
•行列式の 1つの行の各成分が 2つの数の和に分解されていれば、この行列をそれぞれの数
を成分とする 2つの行列式の和に分解できる (性質 4)。

•行列式の 1つの行の各成分に定数 αをかけたものを他の行の対応する成分に加えても、行
列式の値は変わらない (性質 5)。

•行で成り立つことは列でも成り立つ。
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5.1 はじめに 5 同次 1次方程式

問題 III−5 − 1
連立 1次方程式を解きなさい。 

2x1 + 2x2 − x3 = 11

x1 − x2 − 2x3 = 3

3x1 − 3x2 + 2x3 = 1
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5.1 はじめに 5 同次 1次方程式

5.1.4 Cramerの公式
n次元連立 1次方程式

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = b2

...

an1x1 + an2x2+ · · · + anjxj+ · · · + annxn = bn

(2)

の左辺の係数行列を Dとする。D ̸= 0であれば、この方程式の解は (3) で与えられる。

xj = b1A1j + b2A2j + · · · + bnAnj

D
; j = 1, 2, · · · , n　 (3)
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5.1 はじめに 5 同次 1次方程式

解例 III−5 − 1
Cramerの公式を利用する。

x1 =

∣∣∣∣∣∣∣∣
11 2 −1
3 −1 −2
1 −3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 2 −1
1 −1 −2
3 −3 2

∣∣∣∣∣∣∣∣
= 3, x2 =

∣∣∣∣∣∣∣∣
2 11 −1
1 3 −2
3 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 2 −1
1 −1 −2
3 −3 2

∣∣∣∣∣∣∣∣
= 2, x3 =

∣∣∣∣∣∣∣∣
2 2 11
1 −1 3
3 −3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 2 −1
1 −1 −2
3 −3 2

∣∣∣∣∣∣∣∣
= −1
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5.1 はじめに 5 同次 1次方程式

問題 III−5 − 2
連立 1次方程式を解きなさい。 

2x1 + 2x2 − x3 = 0

x1 − x2 − 2x3 = 0

3x1 − 3x2 + 2x3 = 0
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5.1 はじめに 5 同次 1次方程式

解例 III−5 − 2
Cramerの公式を利用する。

x1 =

∣∣∣∣∣∣∣∣
0 2 −1
0 −1 −2
0 −3 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 2 −1
1 −1 −2
3 −3 2

∣∣∣∣∣∣∣∣
= 0, x2 =

∣∣∣∣∣∣∣∣
2 0 −1
1 0 −2
3 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 2 −1
1 −1 −2
3 −3 2

∣∣∣∣∣∣∣∣
= 0, x3 =

∣∣∣∣∣∣∣∣
2 2 0
1 −1 0
3 −3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 2 −1
1 −1 −2
3 −3 2

∣∣∣∣∣∣∣∣
= 0
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5.1 はじめに 5 同次 1次方程式

5.1.5 命題
•正しいか正しくないかを判断できる文章
を『命題』という。

•P を条件、Qを結論として

P =⇒ Q (4)

とあらわす。
•命題が正しい場合、その命題は『真』で
あるといい、正しくない場合は『偽』で
あるという。

5.1.6 命題の否定
•文章の内容を打ち消すことを『否定』と
いう。

•P の否定を P C であらわし、Qの否定を
QC であらわす。

•「命題」と「命題の否定」のうちどちら
かは真でありどちらかは偽である。

•命題が真の場合、正しいことを示さなく
てはならない。

•命題が偽であることを示す場合、反例を
一つ示せばよい。

最上資料館 11/26



5.1 はじめに 5 同次 1次方程式

5.1.7 命題と対偶
命題を

P =⇒ Q (4)

とすると

QC =⇒ P C (5)

を『対偶』という。
命題と対偶の真偽は一致する。命題が正しいことを示す場合、対偶が真であることを示せば
足りる。
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5.2 同次連立 1次方程式 5 同次 1次方程式

5.2 同次連立 1次方程式
定数項全て 0である連立方程式

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = 0
...

an1x1 + an2x2+ · · · + anjxj+ · · · + annxn = 0

(6)

を『同次連立 1次方程式』という。
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5.2 同次連立 1次方程式 5 同次 1次方程式

(6)左辺の係数の行列式 Dが 0でなければ、Cramerの公式により (6)の解は全て 0になる。
消去法の原理� �
同次連立一次方程式の係数の行列式を Dとすると、

D ̸= 0 =⇒ ∀xi = 0 ; i = 1, 2, · · · , n (7)

である。この命題の対偶をとると、

∃xi ̸= 0 ; i = 1, 2, · · · , n =⇒ D = 0 (8)

この主張を『消去法の原理』という。� �
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5.2 同次連立 1次方程式 5 同次 1次方程式

問題 III−5 − 3
同次連立 1次方程式 

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = 0
...

an1x1 + an2x2+ · · · + anjxj+ · · · + annxn = 0

の係数の行列式を Dとする。

∃xi ̸= 0 ; i = 1, 2, · · · , n =⇒ D = 0

を日本語で表現しなさい。
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5.2 同次連立 1次方程式 5 同次 1次方程式

解例 III−5 − 3
同次連立 1次方程式において、ある xi が

xi ̸= 0

の解を持てば、係数の行列式 Dの値は 0である。
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5.2 同次連立 1次方程式 5 同次 1次方程式

例題 1
座標平面上の異なる 2 点を通る直線の方
程式を、行列式を使ってあらわすことを考
える。
座標平面上の与えられた 2 点の座標を

(x1, y1) , (x2, y2)とする。この 2点を通る
直線の方程式を

ax + by + c = 0 (9)

とする。この直線上に 1点 (x3, y3)をとる。

3点、(x1, y1), (x2, y2), (x3, y3)は全てこ
の直線上だから


ax1 + by1 + c = 0

ax2 + by2 + c = 0

ax3 + by3 + c = 0

(10)

が成り立っている。
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5.2 同次連立 1次方程式 5 同次 1次方程式

このことは X, Y, Z に関する同次方程式
x1X + y1Y + Z = 0

x2X + y2Y + Z = 0

x3X + y3Y + Z = 0

(11)

が、X = a, Y = b, Z = cという解を持つこ
とを意味する。
ところが a, b, cは直線の方程式の係数だ

から少なくとも 1つ、0でないものがある。

従って、同次方程式 (11)は、X = Y = Z = 0
の解とは異なる解を持つことになるから、消
去法の原理により (11)の左辺の係数の行列
式は 0でなくてはならない。よって∣∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣∣ = 0 (12)

が成立する。
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5.2 同次連立 1次方程式 5 同次 1次方程式

(x3, y3)は (x1, y1), (x2, y2)を通る任意の点
でよいから、添え字を外して (x, y))とかけ
ば、この直線上の任意の点 (x, y)は∣∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x y 1

∣∣∣∣∣∣∣∣ = 0 (13)

である。これは 2 点 (x1, y1), (x2, y2) を通
る直線の方程式である。

例えば、(x1, x2)平面上の 2点 (3, 4),(5, 6)
を通る直線の方程式は∣∣∣∣∣∣∣∣

3 4 1
5 6 1
x y 1

∣∣∣∣∣∣∣∣ = 0 (14)

である。
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5.2 同次連立 1次方程式 5 同次 1次方程式

問題 III−5 − 4

D =

∣∣∣∣∣∣∣∣
3 4 1
5 6 1
x y 1

∣∣∣∣∣∣∣∣
の値を求めなさい。
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5.2 同次連立 1次方程式 5 同次 1次方程式

解例 III−5 − 4

D = (3 × 6 × 1) + (4 × 1 × x) + (1 × 5 × y) − (3 × 1 × y) − (4 × 5 × 1) − (1 × 6 × x)

= 18 + 4x + 5y − 3y − 20 − 6x

= −2x + 2y − 2

ここで、D = 0とすると

0 = −2x + 2y − 2

2y = 2x + 2

y = x + 1
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5.2 同次連立 1次方程式 5 同次 1次方程式

問題 III−5 − 5
(3, 4), (5, 6)を通る直線を求めなさい。
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5.2 同次連立 1次方程式 5 同次 1次方程式

解例 III−5 − 5
求める直線を

y = ax + b

とする。
(3, 4), (5, 6)を通るのだから4 = 3a + b

6 = 5a + b

を求めればよい。

6 = 5a + b

− ) 4 = 3a + b

2 = 2a

なので求める直線は

y = x + 1
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5.3 まとめ 5 同次 1次方程式

5.3 まとめ
•定数項が全て 0である連立 1次方程式を同次連立 1次方程式という。
•同次連立 1次方程式における Cramerの公式の対偶を『消去法の原理』という。
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5.3 まとめ 5 同次 1次方程式
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5.3 まとめ 5 同次 1次方程式
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