第 IX 部 統計的検定

5 仮説検定

- 95% 信頼区間
- 仮説の棄却
- 区間推定

5.1 はじめに

- コインを投げたとき、裏が 10 回出たことが分かっています。
- コインは何回投げたのでしょうか?
- 何回ぐらい投げれば、裏は 10 回出るのでしょうか?

最上資料館 1/40

5.2 二項分布 5 仮説検定

5.2 二項分布

定義

ある試行において事象 E の起こる確率を $\Pr(E)=p$ 、 その補事象の確率を $\Pr\left(E^C\right)=q$ とする。この試行を独立に n 回繰り返すとき、事象 E の起こる回数を X とすれば X の確率分布は

$$Pr(X = x) = {}_{n}C_{x}p^{x}q^{n-x} \tag{1}$$

である。この確率分布を確率 p に対する次数 n の二項分布といい、B(n,p) という記号であらわす。

最上資料館 2/40

5.2 二項分布 5 仮説検定

5.2.1 二項分布の期待値と分散

- 定理 IX-2 - 1 -

B(n, p) に従う確率変数 X の期待値, 分散, 標準偏差は以下の公式で与えられる。ここで q=1-p とする。

$$E(X) = np (2)$$

$$V(X) = npq (3)$$

$$D(X) = \sqrt{V(X)} = \sqrt{npq} \tag{4}$$

最上資料館

問題 IX-5-1

次の二項分布の期待値と分散並びに標準偏差を求めなさい。

- (1) B(64, 0.5)
- (2) B(100, 0.5)

解例 IX-5-1

(1)

$$E(X) = 64 \times 0.5 = 32$$

$$V(X) = 64 \times 0.5 \times 0.5 = 16$$

$$D(X) = \sqrt{16} = 4$$

(2)

$$E(X) = 100 \times 0.5 = 50$$

 $V(X) = 100 \times 0.5 \times 0.5 = 25$
 $D(X) = \sqrt{25} = 5$

5.2 二項分布 5 仮説検定

5.2.2 標準正規分布

定義

確率密度関数に正規曲線

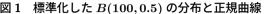
$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) \tag{5}$$

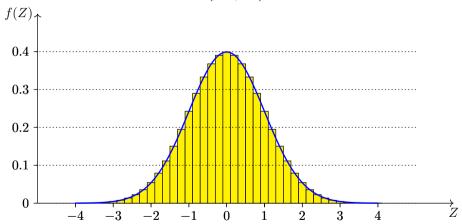
を持つ確率分布を『標準正規分布』といい

$$N(0,1) \tag{6}$$

という記号であらわす。標準正規分布の平均は 0、標準偏差は 1 である。

最上資料館 6/40


5.2.3 二項分布による標準正規分布の近似


確率変数 X が二項分布 B(n, p) に従うとき、確率変数を標準化した確率変数 Z

$$Z = \frac{X - np}{\sqrt{npq}} \tag{7}$$

は n を十分に大きくすると標準正規分布に近づくことが知られている。

最上資料館 7/40

5.3 二項分布の標準化

確率変数 X が B(3, 0.5) に従うときの Z をあらわす。

$$E(X) = 3 \times 0.5 = 1.5 \tag{8}$$

$$V(X) = 3 \times 0.5 \times 0.5 = 0.75 \tag{9}$$

$$D(X) = \sqrt{0.75} = 0.866025404 \cdots \tag{10}$$

なので

$$Z = \frac{X - 1.5}{0.866025404 \cdots} \tag{11}$$

$$\Omega_X = \{0, 1, 2, 3\} \tag{12}$$

なので対応するZ値は表1の通り。

表 1 B(3, 0.5)の Z値

X	Z
0	-1.732051
1	-0.577350
2	0.577350

1.732051

最上資料館

同様に確率変数 X が B(4, 0.5) に従うとき のスをあらわす。

$$E(X) = 4 \times 0.5 = 2 \tag{13}$$

$$V(X) = 4 \times 0.5 \times 0.5 = 1 \tag{14}$$

$$D(X) = \sqrt{1} = 1 \tag{15}$$

$$Z = \frac{X - 2}{1} = X - 2 \tag{16}$$

$$\Omega_X = \{0, 1, 2, 3, 4\} \tag{17}$$

表2 B(4, 0.5)の Z値

•		(-,	_
	X	Z	
	0	-2.000000	
	1	-1.000000	
	2	0.000000	
	3	1.000000	
	4	2.000000	

確率変数 X が B(5, 0.5) に従うときの Z をあらわす。

$$E(X) = 5 \times 0.5 = 2.5 \tag{18}$$

$$V(X) = 5 \times 0.5 \times 0.5 = 1.25 \tag{19}$$

$$D(X) = \sqrt{1.25} = 1.118033989 \dots \tag{20}$$

$$Z = \frac{X - 2.5}{1.119923999} \tag{21}$$

$$\Omega_X = \{0, 1, 2, 3, 4, 5\}$$
 (22)

表3 B(5, 0.5)の Z値

X	Z
0	-2.236068
1	-1.341641

$$2 -0.447214$$

0.447214

確率変数 X が B(6, 0.5) に従うときの Z をあらわす。

$$E(X) = 6 \times 0.5 = 3.0 \tag{23}$$

$$V(X) = 6 \times 0.5 \times 0.5 = 1.5 \tag{24}$$

$$D(X) = \sqrt{1.5} = 1.224744871 \cdots \tag{25}$$

$$Z = \frac{X - 3.0}{1.224744871} \tag{26}$$

$$\Omega_X = \{0, 1, 2, 3, 4, 5, 6\} \tag{27}$$

表 4 B(6, 0.5)の Z値 0 -2.449490-1.632993-0.8164970.0000000.816497 5 1.632993 2.449490

問題 IX-5-2

確率変数 X が B(7, 0.5) に従うときの Z 値を求めなさい。

表5 B(7, 0.5)の Z値

X	Z
0	-2.645751
1	-1.889822
2	-1.133893
3	-0.377964
4	0.377964
5	1.133893
6	1.889822
7	2.645751

表6 B(8, 0.5)のZ値

	(- / - / / / / / / / / / / / - / / / / / / / / / / / - / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / - / - / / / / / / / / / / / - / / / / / / / / / / / - / / / / / / / / / / / -
X	\overline{Z}
0	-2.828427
1	-2.121320
2	-1.414214
3	-0.707107
4	0.000000
5	0.707107
6	1.414214
7	2.121320
8	2.828427

	表 7	B(9,	0.5)	の <i>Z</i> 値
X		Z	X	Z
0	-3.0000	000	5	0.333333
1	-2.3333	333	6	1.000000
2	-1.6666	667	7	1.666667
3	-1.0000	000	8	2.333333
4	-0.3333	333	9	3.000000

	表 8	B(10,	0.5)	の <i>Z</i> 値
X		Z	X	Z
0	-3.162	278	6	0.632456
1	-2.529	822	7	1.264911
2	-1.897	367	8	1.897367
3	-1.264	911	9	2.529822
4	-0.632	456	10	3.162278
5	0.000	000		

	表 9 B(11	$, \underline{0.5})$	の <i>Z</i> 値
X	Z	X	Z
0	-3.316625	6	0.301511
1	-2.713602	7	0.904534
2	-2.110579	8	1.507557
3	-1.507557	9	2.110579
4	-0.904534	10	2.713602
5	-0.301511	11	3.316625

	表 10	B(12,	0.5)	の <i>Z</i> 値
X		Z	X	Z
0	-3.4641	102	7	0.577350
1	-2.8867	751	8	1.154701
2	-2.3094	401	9	1.732051
3	-1.7320	051	10	2.309401
4	-1.1547	701	11	2.886751
5	-0.5773	350	12	3.464102
6	0.0000	000		

	表 11	B(13,	0.5)	の <i>Z</i> 値
X		Z	X	Z
0	-3.6055	551	7	0.277350
1	-3.0508	851	8	0.832050
2	-2.4961	151	9	1.386750
3	-1.9414	451	10	1.941451
4	-1.3867	750	11	2.496151
5	-0.8320	050	12	3.050851
6	-0.2773	350	13	3.605551

X				
		Z	X	Z
0	-3.7416	557	8	0.534522
1	-3.2071	135	9	1.069045
2	-2.6726	312	10	1.603567
3	-2.1380	90	11	2.138090
4	-1.6035	567	12	2.672612
5	-1.0690)45	13	3.207135
6	-0.5345	522	14	3.741657
7	0.0000	000		

	表 13 B(15	(0.5)	の <i>Z</i> 値	\overline{X}		\overline{Z}	\overline{X}	Z
-	Z	X	Z		_			
)	-3.872983	8	0.258199	0		-4.000000	9	0.500000
	-3.356586	9	0.774597	1		-3.500000	10	1.000000
	-2.840188	10	1.290994	2		-3.000000	11	1.500000
				3		-2.500000	12	2.000000
	-2.323790	11	1.807392	4		-2.000000	13	2.500000
	-1.807392	12	2.323790	5		-1.500000	14	3.000000
	-1.290994	13	2.840188	6		-1.000000	15	3.500000
	-0.774597	14	3.356586					0.00000
	-0.258199	15	3.872983	7		-0.500000	16	4.000000
_				8		0.000000		

5.4 信頼区間

定義

確率変数 Z が標準正規分布に従うとき、

$$\Pr\left(-1.96 \le z \le +1.96\right) = 0.950$$

$$-1.96 \leqq z \leqq +1.96$$

(29)

(28)

5.4.1 一般的な正規分布

定義

z が標準正規分布 N(0,1) に従うとする。任意の実数 μ と正数 σ を使い

$$x = \sigma z + \mu \tag{30}$$

とすると、x は平均 μ , 標準偏差 σ の正規分布に従う。この x の分布を『平均 μ , 標準偏差 σ の正規分布』といい、

$$N(\mu, \sigma^2) \tag{31}$$

とあらわす。

最上資料館 20/40

5.4.2 $N\left(\mu,\;\sigma^2
ight)$ の『95% 信頼区間』

(30) を *z* について解くと

$$z = \frac{x - \mu}{\sigma}$$

(32)

を得る。(32) を (29) に代入し整理すると

 $\mu - 1.96 \ \sigma \leqq x \leqq \mu + 1.96 \ \sigma$

である。この区間を $N\left(\mu,\,\sigma^2\right)$ の『95% 信頼区間』という。

(33)

最上資料館

(37)

(40)

22/40

5.4.3 B(n, 0.5)の『95% 信頼区間』

 $1 \le x \le 3$

X ∼ B(4,0.5) の 95 % 信頼区間は

(34)

X ∼ B(5,0.5) の 95 % 信頼区間は

 $1 \le x \le 4$

 $1 \le x \le 5$

X ∼ B(6, 0.5) の 95 % 信頼区間は

(35)

(36)

X ∼ B(10, 0.5) の 95 % 信頼区間は

$$0.95\%$$
信
 $2 \le x \le 8$

 $2 \le x \le 7$

 $X \sim B(7,0.5)$ の 95 % 信頼区間は

X ∼ B(8, 0.5) の 95 % 信頼区間は

X ∼ B(9, 0.5) の 95 % 信頼区間は

 $1 \le x \le 6$

$$6 (38)$$

$$2 \le x \le 6$$

問題 IX-5-3

- (1) $X \sim B(11, 0.5)$ の 95 % 信頼区間を求めなさい。
- (2) $X \sim B(12, 0.5)$ の 95 % 信頼区間を求めなさい。
- (3) $X \sim B(13, 0.5)$ の 95 % 信頼区間を求めなさい。
- (4) $X \sim B(14, 0.5)$ の 95 % 信頼区間を求めなさい。
- (5) $X \sim B(15, 0.5)$ の 95 % 信頼区間を求めなさい。
- (6) $X \sim B(16, 0.5)$ の 95 % 信頼区間を求めなさい。

解例 IX-5-3

- $(1) \quad 3 \le x \le 8$
- $(2) \quad 3 \le x \le 9$
- $(3) \quad 3 \le x \le 10$
- $(4) \quad 4 \le x \le 10$
- $(5) \quad 4 \le x \le 11$
- $(6) 5 \le x \le 11$

5.5 仮説検定

数值例

コインを投げ裏が出る事象を E とする。 事象 E がおこる確率 $\Pr(E) = 0.5$ であるコインを投げたところ、E が 10 回観測された。 このとき、投げた回数を n とする。

ここで、n=16 であると仮説を立てる。

$$H_1: n=16$$
 (41)

事象 E の数を X とすると、B(16,0.5) なの

で、仮説の下では

$$E(X) = 8 \tag{42}$$

$$V(X) = 4 (43)$$

$$D(X) = 2 (44)$$

である。X は近似的に $N(8,2^2)$ に従うので、95% 信頼区間は

$$8 - 1.96 \times 2 \le X \le 8 + 1.96 \times 2$$
 (45)

$$4.08 \le X \le 11.92 \tag{46}$$

であり仮説は妥当である。

n = 36	である	との	仮説の	場合
n - 30	Casa		以印	\sim

$$H_2: \quad n=36$$

仮説の下では期待値と標準偏差は、

$$E(X) = 18 \tag{48}$$

$$V(X) = 9 (49)$$

$$D(X) = 3 (50)$$

なので、 $N(18,3^2)$ の 95% 信頼区間は

$$18 - 1.96 \times 3 \le X \le 18 + 1.96 \times 3$$

(47)

$$12.12 \le X \le 23.88 \tag{52}$$

い。しがって、X=10という状況は、n=36という仮説の下では、xが小さすぎることに

なので X = 10 は 95% 信頼区間に入っていな

この基準を、『有意水準 0.05』または『有 意水準 5%』『有意水準 $\alpha = 5\%$ 』 などとあら

最上資料館

(51)

5.5 仮説検定 5 仮説検定

5.5.1 仮説検定の考え方

前提となる状況を『帰無仮説』という。帰無仮説の下で「稀な現象」が発生した場合

- 1. 帰無仮説は妥当であるが、極めて『稀な現象』が偶々観測された。
- 2. 帰無仮説が不当であり、『普通の現象』が観測されただけ。

統計学では後者の立場を採用する。

- 帰無仮説が妥当ではないと判断することを『帰無仮説を棄却する』という。
- 帰無仮説が棄却できないと判断することを『帰無仮説を受容する』という。
- 帰無仮説の妥当性に対して統計的基準を用いて判断することを『統計的検定』という。

最上資料館 27/40

5.5 仮説検定 5 仮説検定

5.5.2 棄却域

- 帰無仮説が正しいと仮定したときの観測された現象の珍しさの程度を『有意水準』といい α であらわす。
- 有意水準は正値 $(\alpha > 0)$ であり、5%, 1% が良くとられる。
- $\Pr(Z \ge t) \le \alpha$ を満たす最小の t を『臨界値』とよぶ。
- ・標準正規分布において $\alpha = 5\%$ のとき、臨界値は 1.96 である。
- 信頼区間の外側の区間を『棄却域』とよぶ。
- $X \sim N(\mu, \sigma^2)$ の $\alpha = 5\%$ の棄却域 w は

$$w = \{X = x | x < \mu - 1.96 \ \sigma, \ x > \mu + 1.96 \ \sigma\}$$

である。

最上資料館 28/40

5.6 区間推定

例題 1

コインを投げ裏が出る事象を E とする。 事象 E がおこる確率 $\Pr(E) = 0.5$ であるコインを投げたところ、E が 3 回観測された。 このとき、投げた回数を n とする。『95% 信頼区間』で n を『区間推定』しなさい。

解法1

 $X \sim B(n, 0.5)$ において、n を増やしなが

ら X = 3 の Z 値

$$z = \frac{3 - E(X)}{D(X)} \tag{53}$$

をもとめ、Z値が

$$-1.96 \le z \le 1.96 \tag{54}$$

に収まるnの範囲を求める。

$$n=3$$
 のとき、

$$E(X) = 3 \times 0.5 = 1.5$$

$$V(X) = 3 \times 0.5 \times 0.5 = 0.75$$

$$D(X) = \sqrt{0.75} = 0.866025 \cdots$$

$$X=3$$
 なので Z 値は

$$z = \frac{3 - 1.5}{0.866025 \cdots} = 1.732051 \cdots$$

n=4 のとき、

$$E(X) = 4 \times 0.5 = 2$$

$$V(X) = 4 \times 0.5 \times 0.5 = 1$$

$$D(X) = \sqrt{1} = 1$$

$$z = \frac{3-2}{1} = 1$$

$$n=5$$
 のとき、

$$E(X) = 5 \times 0.5 = 2.5$$

$$V(X) = 5 \times 0.5 \times 0.5 = 1.25$$

$$D(X) = \sqrt{1.25} = 1.118034 \cdots$$

$$z = \frac{3 - 2.5}{1.118034 \dots} = 0.447214 \dots$$

n=6 のとき、

$$E(X) = 6 \times 0.5 = 3.0$$

$$V(X) = 6 \times 0.5 \times 0.5 = 1.50$$

$$D(X) = \sqrt{1.50} = 1.224744871 \cdots$$

$$z = \frac{3-3}{1.224744871\cdots} =$$

	表 15	$n=3\sim 8$ の $x=3$ の Z 値
--	------	-----------------------------

\overline{n}	E(X)	V(X)	D(X)	Z 値
3	1.5	0.75	0.866025	1.732
4	2.0	1.00	1.000000	1.000
5	2.5	1.25	1.118034	0.447
6	3.0	1.50	1.224745	0.000
7	3.5	1.75	1.322876	-0.378
8	4.0	2.00	1.414214	-0.707

表 16 $n=9\sim14$ の $x=3$ の Z 値					
n	E(X)	V(X)	D(X)	Z 値	
9	4.5	2.25	1.500000	-1.000	
10	5.0	2.50	1.581139	-1.265	
11	5.5	2.75	1.658312	-1.508	
12	6.0	3.00	1.732051	-1.732	
13	6.5	3.25	1.802776	-1.941	
13	0.0	3.20	1.002770	-1.941	

3.50

1.870829 -2.138

14 - 7.0

X = 3 のとき、Z 値が 95% 信頼区間に入る n の範囲は

$$3 \le n \le 13$$

(55)

である。

n が『95% 信頼区間』に入る区間を推定することを『区間推定』という。

例題 2

解法 2

コインを投げ裏が出る事象を E とする。 事象 E がおこる確率 $\Pr(E)=0.5$ であるコインを投げたところ、E が 10 回観測された。 このとき、投げた回数を n とする。n の区間を『95% 信頼区間』で『区間推定』しなさい。

n を増やしながら、B(n,0.5) における X=10 のときの Z 値をもとめる。

$$E(X) = np = n \times 0.5 \tag{56}$$

$$V(X) = npq = n \times 0.5 \times 0.5 \tag{57}$$

$$D(X) = \sqrt{V(X)} = \sqrt{n \times 0.5 \times 0.5} \qquad (58)$$

$$z = \frac{10 - n \times 0.5}{\sqrt{n \times 0.25}}\tag{59}$$

n=12 から n=31 まで Z 値を求める。

5.6 区間推定

表 17	$n=12\sim19$ の $x=10$ の Z 値				
n	E(X)	V(X)	D(X)	z 値	
12	6.0	3.00	1.732	2.309	
13	6.5	3.25	1.803	1.941	
14	7.0	3.50	1.871	1.604	
15	7.5	3.75	1.936	1.291	
16	8.0	4.00	2.000	1.000	
17	8.5	4.25	2.062	0.728	
18	9.0	4.50	2.121	0.471	
19	9.5	4.75	2.179	0.229	

表 18	n=2	$20\sim25$ ($\mathcal{D} \; x = 10$	oの <i>Z</i> 値
n	E(X)	V(X)	D(X)	z 値
20	10.0	5.00	2.236	0.000
21	10.5	5.25	2.291	-0.218
22	11.0	5.50	2.345	-0.426
23	11.5	5.75	2.398	-0.626
24	12.0	6.00	2.449	-0.816
25	12.5	6.25	2.500	-1.000

最上資料館 35/40

表 19	n=2	$6\sim31$ ($\mathcal{D} x = 10$	oの <i>Z</i> 値
n	E(X)	V(X)	D(X)	z 値
26	13.0	6.50	2.550	-1.177
27	13.5	6.75	2.598	-1.347
28	14.0	7.00	2.646	-1.512
29	14.5	7.25	2.693	-1.671
30	15.0	7.50	2.739	-1.826
31	15.5	7.75	2.784	-1.976

X=10 のとき、X が 95% 信頼区間に入る

n の区間は

$$13 \le n \le 30 \tag{60}$$

である。

最上資料館 36/40

5.6 区間推定 5 仮説検定

問題 IX-5-4

コインを投げ裏が出る事象を E とする。事象 E がおこる確率 $\Pr(E)=0.5$ であるコインを投げたところ、E が 4 回観測された。このとき、投げた回数を n とする。95% 信頼区間で n を区間推定しなさい。

問題 IX-5-5

コインを投げ裏が出る事象を E とする。事象 E がおこる確率 $\Pr(E)=0.5$ であるコインを投げたところ、E が 5 回観測された。このとき、投げた回数を n とする。95% 信頼区間で n を区間推定しなさい。

Z値の算出に際して何らかのアプリを使用することは自由である。

最上資料館 37/40

解例 IX-5-4

 $X \sim B(n, 0.5)$ において X = 4 のとき、X が 95% 信頼区間に入る n の区間は

$$5 \le n \le 15$$

である。

解例 IX-5-5

 $X \sim B(n,\ 0.5)$ において X=5 のとき、X が 95% 信頼区間に入る n の区間は

$$6 \le n \le 18$$

である。

5.7まとめ5仮説検定

5.7 まとめ

- 前提となる状況を『帰無仮説』という。
- 帰無仮説の妥当性に対して統計的基準を用いて判断することを『統計的検定』という。
- 帰無仮説が妥当ではないと判断することを『帰無仮説を棄却する』という。
- 統計的基準となる値を『有意水準』という。
- $X \sim B(n,p)$ において、X = x が与えられたとき、n が『95% 信頼区間』に入る区間を推定することを『区間推定』という。

最上資料館 39/40

5.7.1 参考文献

(1) 「行動科学における統計解析法」芝祐順 南風原朝和 著 『東京大学出版会』1990年3 月 20 日 初版

仮説検定

(2) 「完全独習 統計学入門」小島 寛之 著 『ダイヤモンド社』2006年9月28日 初版

最上資料館 40/40